Microfluidics has great potential as an efficient tool for a large range of applications in industry. The ability of such devices to deal with an extremely small amount of fluid has additional benefits, including superlatively fast and efficient mass and heat transfer. These characteristics of microfluidics have attracted an enormous amount of interest in their use as a novel tool for lipid production and modification. In addition, lipid resources have a close relationship with energy resources, and lipids are an alternative renewable energy source. Here, recent advances in the application of microfluidics for lipid production and modification, especially in the discovery, culturing, harvesting, separating, and monitoring of lipid-producing microorganisms, will be reviewed. Other applications of microfluidics, such as the modification of lipids from microorganisms, will also be discussed. The novel microfluidic tools in this review will be useful in applications to improve lipid production and modification in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-019-05833-4 | DOI Listing |
Sci Rep
January 2025
Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia.
Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).
View Article and Find Full Text PDFSci Rep
January 2025
Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Menstrual pain affects women's quality of life and productivity, yet objective molecular markers for its severity have not been established owing to the variability in blood levels and chemical properties of potential markers such as plasma steroid hormones, lipid mediators, and hydrophilic metabolites. To address this, we conducted a metabolomics study using five analytical methods to identify biomarkers that differentiate menstrual pain severity. This study included 20 women, divided into mild (N = 12) and severe (N = 8) pain groups based on their numerical pain rating scale.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China. Electronic address:
Steamed egg (SE), a traditional egg dish, exhibits steaming time-dependent textural properties. This study investigated the molecular mechanisms underlying SE gel formation and deterioration through quantitative proteomics combined with physicochemical characterization. Results showed optimal gel formation at 11 min steaming, while prolonged steaming (23 min) led to gel cracking and sensory deterioration.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University), Puthanampatti, Tamilnadu 621007, India. Electronic address:
This study successfully synthesised and characterised composites combining chitosan (CH), carboxymethyl cellulose (CMC), and various flavonoids (Fla). This innovative approach demonstrates the potential for developing functional materials with antioxidant and food preservation properties. The composites CH-Fla-CMC (1-5) was characterised using advanced techniques such as FT-IR, UV-Vis, XRD, SEM, TEM, and TGA, providing robust data on their structural, morphological, and thermal properties.
View Article and Find Full Text PDFCancer Lett
January 2025
Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China. Electronic address:
Neutrophils are pivotal in the immune system and have been recognized as significant contributors to cancer development and progression. These cells undergo metabolic reprogramming in response to various stimulus, including infections, diseases, and the tumor microenvironment (TME). Under normal conditions, neutrophils primarily rely on aerobic glucose metabolism for energy production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!