Temporal processing properties of auditory DUM neurons in a bush-cricket.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

Kirksville College of Osteopathic Medicine, A.T. Still University, 800 W. Jefferson Street, Kirksville, MO, 63501, USA.

Published: October 2019

Insects with ears process sounds and respond to conspecific signals or predator cues. Axons of auditory sensory cells terminate in mechanosensory neuropils from which auditory interneurons project into (brain-) areas to prepare response behaviors. In the prothoracic ganglion of a bush-cricket, a cluster of local DUM (dorsal unpaired median) neurons has recently been described and constitutes a filter bank for carrier frequency. Here, we demonstrate that these neurons also constitute a filter bank for temporal patterns. The majority of DUM neurons showed pronounced phasic-tonic responses. The transitions from phasic to tonic activation had different time constants in different DUM neurons. Time constants of the membrane potential were shorter in most DUM neurons than in auditory sensory neurons. Patterned stimuli with known behavioral relevance evoked a broad range of responses in DUM neurons: low-pass, band-pass, and high-pass characteristics were encountered. Temporal and carrier frequency processing were not correlated. Those DUM neurons producing action potentials showed divergent processing of temporal patterns when the graded potential or the spiking was analyzed separately. The extent of membrane potential fluctuations mimicking the patterned stimuli was different between otherwise similarly responding neurons. Different kinds of inhibition were apparent and their relevance for temporal processing is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00359-019-01359-9DOI Listing

Publication Analysis

Top Keywords

dum neurons
24
neurons
10
temporal processing
8
auditory sensory
8
filter bank
8
carrier frequency
8
temporal patterns
8
time constants
8
membrane potential
8
patterned stimuli
8

Similar Publications

The protein gene product 9.5 (PGP9.5), also termed ubiquitin C-terminal hydrolase L1 (UCH-L1) is an important component of the ubiquitination/deubiquitination system and plays a role in axonal transport.

View Article and Find Full Text PDF

Flupyradifurone activates DUM neuron nicotinic acetylcholine receptors and stimulates an increase in intracellular calcium through the ryanodine receptors.

Pestic Biochem Physiol

November 2024

Laboratoire Physiologie, Ecologie et Environnement (P2E), USC-INRAE 1328, Université d'Orléans, 1 rue de Chartres, 45067 Orléans, France; Institut Universitaire de France, 1 rue Descartes, 75005 Paris, France. Electronic address:

Article Synopsis
  • Insect neuronal nicotinic acetylcholine receptors (nAChRs) are crucial for the development and function of the nervous systems in both vertebrates and invertebrates, and are targeted by some insecticides.
  • Research utilizing DUM neurons investigated how flupyradifurone (FLU) impacts these receptors and the role of calcium release in this process.
  • Findings indicated that FLU's effects are likely due to its interaction with nAChRs and the subsequent calcium release from ryanodine receptors (RyRs), illustrating the complexity of FLU's mode of action.
View Article and Find Full Text PDF

Spatial, transcriptomic, and epigenomic analyses link dorsal horn neurons to chronic pain genetic predisposition.

Cell Rep

November 2024

Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA. Electronic address:

Key mechanisms underlying chronic pain occur within the dorsal horn. Genome-wide association studies (GWASs) have identified genetic variants predisposed to chronic pain. However, most of these variants lie within regulatory non-coding regions that have not been linked to spinal cord biology.

View Article and Find Full Text PDF

The complex neurochemistry of the cockroach antennal heart.

Cell Tissue Res

November 2024

Department of Biology II (Zoology), RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany.

The innervation of the antennal heart of the cockroach Periplaneta americana was studied with immunocytochemical techniques on both the light and electron microscopic levels. The antennal heart is innervated by two efferent systems, both using one biogenic amine in combination with neuropeptides. In one, we found co-localization of serotonin with proctolin and allatostatin.

View Article and Find Full Text PDF

Insect neuronal nicotinic acetylcholine receptors (nAChRs) are transmembrane receptors that play a key role in the development and synaptic plasticity of both vertebrates and invertebrates and are considered to be major targets of neonicotinoid insecticides. We used dorsal unpaired median (DUM) neurons, which are insect neurosecretory cells, in order to explore the intracellular mechanisms leading to the regulation of insect neuronal nAChRs in more detail. Using whole-cell patch-clamp and fura-2AM calcium imaging techniques, we found that a novel CaMKK/AMPK pathway could be involved in the intracellular regulation of DUM neuron nAChRs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!