Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The latent utilization of biomaterials that are osteo-conducive in the advancement of healing bone fracture has fascinated extensive consideration. This work includes the synthesis of silver nanoparticles (AgNPs) with the help of a Bauhinia acuminate plant flower extract through an ecofriendly synthetic process without any use of harmful reductants. In the fabrication of AgNPs, Bauhinia acuminate plant flower extract bio constituents acts as both stabilizing and reducing agent. The studies of Fourier transform infrared (FTIR) and X-ray diffraction (XRD) techniques confirmed the formation of AgNPS. TEM images revealed that AgNPs are uniform with average particle size of 17 nm. Further, this work explored if silver nanoparticles (AgNPs) might endorse the osteogenesis and proliferation of mesenchymal stem cells (MSCs) and advance the curing of bone fractures. We also exhibited that the prepared AgNPs could promote the in -vitro osteogenic differentiation and proliferation of MSCs'. Also, the prepared AgNps could stimulate the proliferation of mMSCs at specific concentrations of 6-20 μM. Further, cell viability studies showed that AgNPs exhibited no reduction in mouse mesenchymal stem cell viability at <4 μM. Further, these results indicated the induction effects of AgNPs on osteogenic differentiation and proliferation on MSCs, as well as the advancement of meniscus injury healing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2019.111536 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!