A good understanding of lead (Pb) mobilization in eutrophic lakes is a key to the accurate assessment of Pb pollution. In this work, dissolved and labile Pb was determined by both high resolution dialysis (HR-Peeper) and diffusive gradients in thin films (DGT) in sediment-water profiles of the hyper-eutrophic Meiliang Bay of Lake Taihu on a monthly basis during one year. The drinking water standards for dissolved Pb of the World Health Organization (10μg/L) and those of China were exceeded in the overlying water (20.79-118.5μg/L). Out of which, a total of five months even exceeded the fisheries water quality limitation (50μg/L) in China. The algal blooms created an anaerobic environment in the surface sediments in July. The reductive conditions led to the dissolution of Fe/Mn and this caused the release of Pb, followed by organic matter complexation. This was supported by the coincident changes of dissolved Pb with dissolved organic matter (DOM) in sediments under anaerobic incubation. Algae residue decomposition in October caused another distinct release of Pb, but this process should be considerably suppressed by increased sulfide precipitation and pyrite adsorption of Pb ion. These results indicated that Pb mobilization in sediments can be significantly enhanced by algal blooms in eutrophic lakes, indicating that further attention should be paid to Pb pollution in waters with harmful algal blooms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.07.152 | DOI Listing |
Chemosphere
January 2025
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, 18, Korpusnaya st., St. Petersburg, 197110, Russia.
Harmful cyanobacterial blooms (HCB) have become a common issue in freshwater worldwide. Biological methods for controlling HCB are relatively cost effective and environmentally friendly. The strain of ascomycete GF6 was isolated from a water sample collected from the estuarine zone of the eastern part of the Gulf of Finland.
View Article and Find Full Text PDFEnviron Res
January 2025
State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
The water-level fluctuation zones (WLFZ) in Three Gorges Reservoir encounter several ecological challenges, particularly potential greenhouse gas (GHG) emissions and water eutrophication due to water level variations. Therefore, to address those challenges, our study explores the relationships between soil properties (Phosphorus cycle), plant conditions, microbial community, and GHG emissions. Our findings reveal that aboveground plants are the key link in the WLFZ ecosystem, which has previously been overlooked.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
Xiangshan Bay, one of China's most eutrophic semi-enclosed bays, was studied to examine the seasonal distributions of salinity, temperature, nutrients, and nitrate isotopes (δN and δO) to elucidate seasonal variations in nitrate sources and the key factors driving nitrogen level fluctuations. Based on nitrate δN (6.1-8.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Marine Sciences, Berhampur University, Bhanja Bihar 760007, India.
The Indian coast has been experiencing an increase in algal bloom events over the decades. Owing to the regional and seasonal dynamics of algal biomass (proxy: chlorophyll-a, hereafter chl-a), a multitude of thresholds of chl-a has been defined for different parts of the global seas to determine algal bloom conditions. However, no such clear definition is given for the Indian coastal waters.
View Article and Find Full Text PDFJ Toxicol Environ Health A
January 2025
School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
The global phenomenon of cyanobacterial bloom pollution is spreading globally due to climate change and eutrophication. It is well established that harmful cyanobacteria produce a wide range of toxins including microcystin-LR (MC-LR), a cyclic heptapeptide toxin known to damage various organs. The intestinal tract is the main site of MC-LR absorption and one of the targets susceptible to toxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!