A comprehensive understanding of enhanced Pb mobilization in sediments caused by algal blooms.

Sci Total Environ

International Network for Environment and Health, School of Geography and Archaeology and Ryan Institute, National University of Ireland, Galway, Ireland.

Published: November 2019

A good understanding of lead (Pb) mobilization in eutrophic lakes is a key to the accurate assessment of Pb pollution. In this work, dissolved and labile Pb was determined by both high resolution dialysis (HR-Peeper) and diffusive gradients in thin films (DGT) in sediment-water profiles of the hyper-eutrophic Meiliang Bay of Lake Taihu on a monthly basis during one year. The drinking water standards for dissolved Pb of the World Health Organization (10μg/L) and those of China were exceeded in the overlying water (20.79-118.5μg/L). Out of which, a total of five months even exceeded the fisheries water quality limitation (50μg/L) in China. The algal blooms created an anaerobic environment in the surface sediments in July. The reductive conditions led to the dissolution of Fe/Mn and this caused the release of Pb, followed by organic matter complexation. This was supported by the coincident changes of dissolved Pb with dissolved organic matter (DOM) in sediments under anaerobic incubation. Algae residue decomposition in October caused another distinct release of Pb, but this process should be considerably suppressed by increased sulfide precipitation and pyrite adsorption of Pb ion. These results indicated that Pb mobilization in sediments can be significantly enhanced by algal blooms in eutrophic lakes, indicating that further attention should be paid to Pb pollution in waters with harmful algal blooms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.07.152DOI Listing

Publication Analysis

Top Keywords

algal blooms
16
mobilization sediments
8
eutrophic lakes
8
organic matter
8
comprehensive understanding
4
understanding enhanced
4
enhanced mobilization
4
sediments
4
sediments caused
4
algal
4

Similar Publications

Harmful cyanobacterial blooms (HCB) have become a common issue in freshwater worldwide. Biological methods for controlling HCB are relatively cost effective and environmentally friendly. The strain of ascomycete GF6 was isolated from a water sample collected from the estuarine zone of the eastern part of the Gulf of Finland.

View Article and Find Full Text PDF

The water-level fluctuation zones (WLFZ) in Three Gorges Reservoir encounter several ecological challenges, particularly potential greenhouse gas (GHG) emissions and water eutrophication due to water level variations. Therefore, to address those challenges, our study explores the relationships between soil properties (Phosphorus cycle), plant conditions, microbial community, and GHG emissions. Our findings reveal that aboveground plants are the key link in the WLFZ ecosystem, which has previously been overlooked.

View Article and Find Full Text PDF

Xiangshan Bay, one of China's most eutrophic semi-enclosed bays, was studied to examine the seasonal distributions of salinity, temperature, nutrients, and nitrate isotopes (δN and δO) to elucidate seasonal variations in nitrate sources and the key factors driving nitrogen level fluctuations. Based on nitrate δN (6.1-8.

View Article and Find Full Text PDF

The Indian coast has been experiencing an increase in algal bloom events over the decades. Owing to the regional and seasonal dynamics of algal biomass (proxy: chlorophyll-a, hereafter chl-a), a multitude of thresholds of chl-a has been defined for different parts of the global seas to determine algal bloom conditions. However, no such clear definition is given for the Indian coastal waters.

View Article and Find Full Text PDF

The global phenomenon of cyanobacterial bloom pollution is spreading globally due to climate change and eutrophication. It is well established that harmful cyanobacteria produce a wide range of toxins including microcystin-LR (MC-LR), a cyclic heptapeptide toxin known to damage various organs. The intestinal tract is the main site of MC-LR absorption and one of the targets susceptible to toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!