Polyethylenimine-coated superparamagnetic iron oxide nanoparticles impair in vitro and in vivo angiogenesis.

Nanomedicine

Department of Immunology and Oncology and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Cantoblanco, 28049, Madrid, Spain. Electronic address:

Published: October 2019

Endothelial cells are essential to tumor vascularization and impairing their activity can potentially limit tumor growth. Since polyethylenimine (PEI)-coated superparamagnetic iron oxide nanoparticles (SPIONs) are bioactive nanosystems that modulate inflammatory macrophage responses and limit tumor cell invasion, we evaluated their effects on endothelial cell angiogenesis. PEI-SPION triggered proinflammatory gene profiles in a murine endothelial cell line and in primary human umbilical cord vein endothelial cells (HUVECs). These nanoparticles impaired endothelial cell migration and inhibited HUVEC tube formation. Magnetically tumor-targeted PEI-SPIONs reduced tumor vessel numbers and promoted intratumor macrophage infiltration in a tumor xenograft model. PEI-SPION treatment impaired M2 macrophage-promoted tube formation and affected HUVEC cytoskeleton by limiting Src and Cortactin activation. These mechanisms could contribute to PEI-SPION in vitro and in vivo antiangiogenic potential. These data confirm that PEI-SPION administration and application of a localized magnetic field could offer an affordable anti-angiogenic anti-tumoral targeted treatment that would complement other therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nano.2019.102063DOI Listing

Publication Analysis

Top Keywords

endothelial cell
12
superparamagnetic iron
8
iron oxide
8
oxide nanoparticles
8
vitro vivo
8
endothelial cells
8
limit tumor
8
tube formation
8
endothelial
5
tumor
5

Similar Publications

The biology centered around the TGF-beta type I receptor Activin Receptor-Like Kinase (ALK)1 (encoded by ACVRL1) has been almost exclusively based on its reported endothelial expression pattern since its first functional characterization more than two decades ago. Here, in efforts to better define the therapeutic context in which to use ALK1 inhibitors, we uncover a population of tumor-associated macrophages (TAMs) that, by virtue of their unanticipated Acvrl1 expression, are effector targets for adjuvant anti-angiogenic immunotherapy in mouse models of metastatic breast cancer. The combinatorial benefit depended on ALK1-mediated modulation of the differentiation potential of bone marrow-derived granulocyte-macrophage progenitors, the release of CD14+ monocytes into circulation, and their eventual extravasation.

View Article and Find Full Text PDF

Restenosis remains a long-standing limitation to effectively maintain functional blood flow after percutaneous transluminal angioplasty (PTA). While the use of drug-coated balloons (DCBs) containing antiproliferative drugs has improved patient outcomes, limited tissue transfer and poor therapeutic targeting capabilities contribute to off-target cytotoxicity, precluding adequate endothelial repair. In this work, a DCB system was designed and tested to achieve defined arterial delivery of an antirestenosis therapeutic candidate, cadherin-2 (N-cadherin) mimetic peptides (NCad), shown to selectively inhibit smooth muscle cell migration and limit intimal thickening in early animal PTA models.

View Article and Find Full Text PDF

Novel Protective Role for Gut Microbiota-derived Metabolite PAGln in Doxorubicin-induced Cardiotoxicity.

Cardiovasc Drugs Ther

January 2025

Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.

Purpose: Doxorubicin (Dox) is a classic anthracycline chemotherapy drug with cause cumulative and dose-dependent cardiotoxicity. This study aimed to investigate the potential role and molecular mechanism of phenylacetylglutamine (PAGln), a novel gut microbiota metabolite, in Dox-induced cardiotoxicity (DIC).

Methods: DIC models were established in vivo and in vitro, and a series of experiments were performed to verify the cardioprotective effect of PAGln.

View Article and Find Full Text PDF

Narciclasine attenuates sepsis-associated acute kidney injury through the ESR1/S100A11 axis.

Funct Integr Genomics

January 2025

Department of Emergency and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, People's Republic of China.

Narciclasine (Ncs) was effective in sepsis management due to its antioxidant properties. The present study dissected the protective effects of Ncs against sepsis-associated acute kidney injury (SA-AKI) and the molecular mechanisms. The SA-AKI mice were developed using cecum ligation and puncture and pretreated with Ncs and adenoviruses.

View Article and Find Full Text PDF

CD9/SOX2-positive cells in the intermediate lobe of the rat pituitary gland exhibit mesenchymal stem cell characteristics.

Cell Tissue Res

January 2025

Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan.

Adult tissue stem cells of the anterior pituitary gland, CD9/SOX2-positive cells, are believed to exist in the marginal cell layer (MCL) bordering the residual lumen of the Rathke's pouch. These cells migrate from the intermediate lobe side of the MCL (IL-MCL) to the anterior lobe side of the MCL and may be involved in supplying hormone-producing cells. Previous studies reported that some SOX2-positive cells of the anterior lobe differentiate into skeletal muscle cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!