The inhibitory effect of lactose oxidase on the growth of foodborne pathogens and spoilage microorganisms associated with dairy products was evaluated through an overlay inhibition assay. Lactose oxidase generates hydrogen peroxide via lactose oxidation into lactobionic acid. Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica ser. Typhimurium, Staphylococcus aureus, Pseudomonas fragi, and Penicillium chrysogenum were used as indicators. A commercially available solution of lactose oxidase was applied at different concentrations (0, 0.12, 1.2, and 12 g/L) in 4 types of media [brain heart infusion agar (BHI), BHI + sodium thiocyanate (NaSCN), BHI + lactose, and BHI + NaSCN + lactose] to evaluate the effect of lactose and thiocyanate on microbial inhibition. Lactose oxidase inhibited the growth of all the indicators at a concentration of 12 g/L of the enzyme solution in the presence of lactose alone and in combination with NaSCN. However, supplementation with NaSCN had no effect on the magnitude of microbial inhibition. Staphylococcus aureus was the most sensitive pathogen, and Ps. fragi was the most sensitive of all the indicators in general to lactose oxidase. Listeria monocytogenes and Ps. fragi showed higher susceptibility to the antimicrobial effect of lactose oxidase at 6°C than at their corresponding optimum growth temperature. The inhibitory effect was attributed to the generation of hydrogen peroxide from the oxidation of lactose. Findings from this study demonstrate that lactose oxidase could be used as a novel approach to inhibit the growth of mold and bacteria. It could also be applied as a label-friendly preservative in dairy foods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2019-16757 | DOI Listing |
J Dairy Sci
October 2021
Department of Food Science, Cornell University, Ithaca, NY 14853. Electronic address:
Listeria monocytogenes is a ubiquitous pathogen that can cause morbidity and mortality in immunocompromised individuals. Growth of L. monocytogenes is possible at refrigeration temperatures due to its psychrotrophic nature.
View Article and Find Full Text PDFFoods
June 2021
Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
is a ubiquitous pathogen that can cause morbidity and mortality in the elderly, immune compromised, and the fetuses of pregnant women. The intrinsic properties of fresh cheese-high water activity (aW), low salt content, and near-neutral pH-make it susceptible to contamination and growth at various points in the production process. The aim of this study was to investigate the ability of lactose oxidase (LO), a naturally derived enzyme, to inhibit the growth of in fresh cheese during various points of the production process.
View Article and Find Full Text PDFJ Dairy Sci
May 2021
Department of Food Science and Technology, Cornell University, Ithaca, NY 14850. Electronic address:
In this study, we investigated the antifungal activity of lactose oxidase (LO) as a potential biopreservative in dairy products. Our study objectives were to screen antifungal activity of LO against common mold strains, to detect the minimum inhibitory level of LO against the same strains, and to understand how LO affects the pH and lactic acid bacteria (LAB) counts in set yogurt. Five mold strains (Penicillium chrysogenum, Penicillium citrinum, Penicillium commune, Penicillium decumbens, and Penicillium roqueforti) were used throughout study.
View Article and Find Full Text PDFJ Dairy Sci
March 2021
Department of Food Science, Cornell University, Ithaca, NY 14853. Electronic address:
Shelf-stable milk is consumed worldwide, and this market is expected to continue growing. One quality challenge for UHT milk is age gelation during shelf life, which is in part caused by bacterial heat-stable proteases (HSP) synthesized during the raw milk storage period before heat processing. Some Pseudomonas spp.
View Article and Find Full Text PDFJ Dairy Sci
September 2019
Department of Food Science, Cornell University, Ithaca, NY 14853. Electronic address:
The inhibitory effect of lactose oxidase on the growth of foodborne pathogens and spoilage microorganisms associated with dairy products was evaluated through an overlay inhibition assay. Lactose oxidase generates hydrogen peroxide via lactose oxidation into lactobionic acid. Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica ser.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!