The calculation of electron ionization energies is a key component for the simulation of photoelectron spectroscopy. CIS(D) is a perturbative doubles correction for the single excitation configuration interaction (CIS) method which provides a new approach for computing excitation energies. It is shown that by introducing a virtual orbital subspace that consists of a single "ghost" orbital, valence electron ionization energies can be computed using a scaled CIS(D) approach with an accuracy comparable with considerably more computationally intensive methods, such as ionization-potential equation of motion coupled cluster theory, and simulated spectra show a significant improvement relative to spectra based upon Koopmans' theorem. When the model is applied to the ionization energies for core orbitals, there is an increase in the error, particularly for the heavier nuclei considered (silicon to chlorine), although the relative energy of the ionization energies are predicted accurately. In addition to its inherent computational efficiency relative to other wavefunction based approaches, a significant advantage of this approach is that the ionization energies for all electrons can be obtained in a single calculation, in contrast to Δself-consistent field based methods.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5100098DOI Listing

Publication Analysis

Top Keywords

ionization energies
24
electron ionization
12
scaled cisd
8
energies
7
ionization
6
based
4
cisd based
4
based method
4
method calculation
4
calculation valence
4

Similar Publications

This study systematically investigated the effect of organic solvent addition on the detection signal intensity of 15 organic pesticides in water using ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS). The analysis of chromatographic peak area ratios in ultrapure water (UPW) versus 30% methanol (MeOH)-UPW showed that the adsorption effects (AEs, mainly from injection vials with weaker polarity) were the main factor influencing the detection intensity of the organic pesticides. The AEs varied with pesticide type and concentration, especially for those with high logK values and longer retention times, such as malathion, triadimefon, prometryn, S-metolachlor, diazinon, and profenofos.

View Article and Find Full Text PDF

Ester collectors have rapidly developed into the main flotation collectors for copper sulfide minerals since they were developed. In this study, the collecting performance of four collectors, O-isopropyl-N-ethyl thionocarbamate ester (IPETC), 3-pentyl xanthate acrylate ester (PXA), O-isobutyl-N-allyl-thionocarbamate (IBALTC), and O-isobutyl-N-isobutoxycarbonyl-thionocarbamate (IBIBCTC), was investigated through microflotation tests, microcalorimetric measurements, and quantum chemical calculations. The results of the microflotation tests show that IBALTC and IPETC have stronger collecting abilities than IBIBCTC and PXA; the order of collecting ability is IBALTC > IPETC > IBIBCTC > PXA.

View Article and Find Full Text PDF

In this work, within the framework of a self-consistent model of arc discharge, a simulation of plasma parameters in a mixture of argon and methane was carried out, taking into account the evaporation of the electrode material in the case of a refractory and non-refractory cathode. It is shown that in the case of a refractory tungsten cathode, almost the same methane conversion rate is observed, leading to similar values in the density of the main methane conversion products (C, C, H) at different values of the discharge current density. However, with an increase in the current density, the evaporation rate of copper atoms from the anode increases, and a jump in the - characteristic is observed, caused by a change in the plasma-forming ion.

View Article and Find Full Text PDF

Electronic spectra for OThF have been recorded using fluorescence excitation and two-photon resonantly enhanced ionization techniques. Multiple vibronic bands were observed in the 340-460 nm range. Dispersed fluorescence spectra provided ground state vibrational constants and evidence of extensive vibronic state mixing at higher excitation energies.

View Article and Find Full Text PDF

Assessment of the Performance of the Dose Calibrator Used in Radioactivity Measurement.

Indian J Nucl Med

November 2024

Center for Research and Production of Radioisotopes, Dalat Nuclear Research Institute, Vietnam Atomic Energy Institute (VINATOM), Da Lat City, Lam Dong Province, Vietnam.

Aims: This study aimed to evaluate the principal technical characteristics of a well-type gas-filled ionization chamber dose calibrator used in measuring radiopharmaceutical activity, namely accuracy, repeatability, and linearity. Furthermore, this work also explored the correlation between the device's response and the position and volume of the radiopharmaceutical I-131.

Materials And Methods: Experimental measurements were conducted on the ATOMLAB 500 dose calibrator using NIST traceable Cs-137 source to determine the accuracy and repeatability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!