Background: Nitrate is a common water contaminant that has been associated with birth defects, although the evidence is limited. The purpose of this study was to examine whether maternal consumption of nitrate through drinking water is associated with an increased risk of congenital anomalies.
Methods: The study included a total of 348,250 singletons births from the state of Missouri between January 1, 2004 and December 31, 2008. Individual-level birth defect data and maternal and child characteristics were obtained from the Missouri birth defects registry and state vital statistics records. Outcomes were linked with county-specific monthly estimates of the nitrate concentration in finished water, based on data collected for compliance with the Safe Drinking Water Standard. Poisson models were fit to examine the association between nitrate exposure and birth defects. Average nitrate exposure during the first trimester and over 12 months prior to birth were modeled as continuous variables. Sensitivity analyses included restriction of the sample to counties with <20% and <10% private well usage to reduce exposure misclassification as well as limiting the analyses to residents of rural counties only to account for potential confounding by urbanicity.
Results: Estimated water concentrations of nitrate were generally low and below the Environmental Protection Agency's maximum contaminant level of 10 mg/L. Nitrate exposure was associated with a significantly increased risk of limb deficiencies (RR for 1 mg/L (RR) = 1.26, 95% CI = 1.05, 1.51) in models without well restriction. Nitrate was also weakly associated with an increased risk of congenital heart defects (RR = 1.13, 95%CI = 0.93, 1.51) and neural tube defects (RR = 1.18, 95%CI = 0.93, 1.51) in models with well restriction (<10%).
Conclusion: The positive associations found between nitrate exposure via drinking water and congenital abnormalities are largely consistent with some previous epidemiologic studies. The results of this study should be interpreted with caution given limitations in our ability to estimate exposures and the lack information on some risk factors for congenital abnormalities. Our findings may have serious policy implications given that exposure levels in our study were well below current EPA standards for nitrate in drinking water.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710151 | PMC |
http://dx.doi.org/10.1016/j.envres.2019.108553 | DOI Listing |
China CDC Wkly
January 2025
State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
Introduction: The establishment of a high-throughput quantification approach for waterborne pathogenic protozoa and helminths is crucial for rapid screening and health risk assessment.
Methods: We developed a high-throughput quantitative polymerase chain reaction (HT-qPCR) assay targeting 19 waterborne protozoa and 3 waterborne helminths and validated its sensitivity, specificity, and repeatability. The assay was then applied to test various environmental media samples.
Background: Globally, infectious diseases such as pneumonia, diarrhea, and malaria are the leading causes of death for children under 5. Diarrheal disease is a significant public health concern and causes the death of approximately 525,000 children under the age of 5 every year. In Ethiopia, studies revealed that the prevalence of diarrhea among children under 5 years is alarming.
View Article and Find Full Text PDFHeliyon
January 2025
Faculty of Science and Technology, Campus of Banekane, Université des Montagnes, P.O. Box 208, Bangangté, Cameroon.
This article evaluates the prospects for rainwater harvesting (RWH) as a means of optimizing water management in the Mandara Mountains. RWH is a small-scale water conservation approach for locally intercepting and storing rainfall before it enters the usual hydrologic cycle. This ancient practice has recently sustained lives in semiarid areas of the world (e.
View Article and Find Full Text PDFHeliyon
January 2025
African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, Osun State, Nigeria.
Environmental antibiotic residues (EARs) and antibiotic-resistant bacteria (ARB) are known to contribute to global antimicrobial resistance (AMR). This study investigated EAR levels in selected wells, river, abattoir wastewater, bottled water and sachet water from Ede, Nigeria. Ecological risk quotient (RQ) and health risk (Hazard quotient) of the levels of these EARs, ARB and multidrug-resistant bacteria (MDR) with their antibiotic resistance were calculated.
View Article and Find Full Text PDFJ Toxicol Environ Health A
January 2025
Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China.
Inflammatory bowel disease (IBD) is a complex gastrointestinal disorder attributed to genetic and environmental factors. Microcystin-leucine-arginine (MC-LR) is an environmental toxin that accumulates in the gut and produces intestinal damage. The aim of this study was to investigate the effects of exposure to MC-LR on development and progression of IBD as well examine the underlying mechanisms of microcystin-initiated tissue damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!