5-Aza-2'-deoxycytidine increases hypoxia tolerance-dependent autophagy in mouse neuronal cells by initiating the TSC1/mTOR pathway.

Biomed Pharmacother

Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China; Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China. Electronic address:

Published: October 2019

AI Article Synopsis

  • Research indicates that 5-Aza-2'-deoxycytidine (5-Aza-CdR) can enhance hypoxia tolerance by inhibiting protein phosphatase-1γ (PP1γ), which is linked to autophagy and metabolic regulation in brain cells.
  • In tests, 5-Aza-CdR treatment resulted in increased autophagy markers, particularly TSC1 and LC3, and decreased activity of the mTOR pathway, suggesting a shift towards autophagy in response to chronic low oxygen conditions.
  • The findings were confirmed through experiments on mice and cultured neuronal cells, reinforcing the idea that 5-Aza-CdR potentially promotes cellular survival by activating the TSC1/m

Article Abstract

Background: Our previous study found that 5-Aza-2'-deoxycytidine (5-Aza-CdR) can repress the expression and activity of protein serine/threonine phosphatase-1γ (PP1γ) in mouse hippocampus. It is well known that PP1γ regulates cell metabolism, which is related to hypoxia/ischaemia tolerance. It has been reported that it can also induce autophagy in cancer cells. Autophagy is important for maintaining cellular homeostasis associated with metabolism. In this study, we examined whether 5-Aza-CdR increases hypoxia tolerance-dependent autophagy by initiating the TSC1/mTOR/autophagy signalling pathway in neuronal cells.

Methods: 5-Aza-CdR was either administered to mice via intracerebroventricular injection (i.c.v) or added to cultured hippocampal-derived neuronal cell line (HT22 cell) in the medium for cell culture. The hypoxia tolerance of mice was measured by hypoxia tolerance time and Perl's iron stain. The mRNA and protein expression levels of tuberous sclerosis complex 1 (TSC1), mammalian target of rapamycin (mTOR) and autophagy marker light chain 3 (LC3) were measured by real-time PCR and western blot. The p-mTOR and p-p70S6k proteins were used as markers for mTOR activity. In addition, the role of autophagy was determined by correlating its intensity with hypoxia tolerance in a time-dependent manner. At the same time, the involvement of the TSC1/mTOR pathway in autophagy was also examined through transfection with TSC1 (hamartin) plasmid.

Results: 5-Aza-CdR was revealed to increase hypoxia tolerance and induce autophagy, accompanied by an increase in mRNA and protein expression levels of TSC1, reduction in p-mTOR (Ser2448) and p-p70S6k (Thr389) protein levels, and an increase in the ratio of LC3-II/LC3-I in both mouse hippocampus and hippocampal-derived neuronal cell line (HT22). The fluorescence intensity of hamartin was enhanced in the hippocampus of mice exposed to 5-Aza-CdR. Moreover, HT22 cells that over-expressed TSC1 showed more autophagy.

Conclusions: 5-Aza-CdR can increase hypoxia tolerance by inducing autophagy by initiating the TSC1/mTOR pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2019.109219DOI Listing

Publication Analysis

Top Keywords

hypoxia tolerance
20
tsc1/mtor pathway
12
autophagy
9
increases hypoxia
8
hypoxia tolerance-dependent
8
tolerance-dependent autophagy
8
initiating tsc1/mtor
8
mouse hippocampus
8
induce autophagy
8
autophagy initiating
8

Similar Publications

Hypoxia tolerance and its variation with temperature, activity, and body mass, are critical ecophysiological traits through which climate impacts marine ectotherms. To date, experimental determination of these traits is limited to a small subset of modern species. We leverage the close coupling of carbon and oxygen in animal metabolism to mechanistically relate these traits to the carbon isotopes in fish otoliths (δC).

View Article and Find Full Text PDF

Hypoxia-tolerant polymeric photosensitizer prodrug for cancer photo-immunotherapy.

Nat Commun

January 2025

National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, PR China.

Although photodynamic immunotherapy represents a promising therapeutic approach against malignant tumors, its efficacy is often hampered by the hypoxia and immunosuppressive conditions within the tumor microenvironment (TME) following photodynamic therapy (PDT). In this study, we report the design guidelines towards efficient Type-I semiconducting polymer photosensitizer and modify the best-performing polymer into a hypoxia-tolerant polymeric photosensitizer prodrug (HTPS) for cancer photo-immunotherapy. HTPS not only performs Type-I PDT process to partially overcome the limitation of hypoxic tumors in PDT by recycling oxygen but also specifically releases a Signal Transducer and Activator of Transcription-3 (STAT3) inhibitor (Niclosamide) in response to a cancer biomarker in the TME.

View Article and Find Full Text PDF

Heat acclimation mediates cellular protection via HSP70 stabilization of HIF-1α protein in extreme environments.

Int J Biol Sci

January 2025

Department of Otolaryngology Head and Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China.

Heat acclimation (HA) is an evolutionarily conserved trait that enhances tolerance to novel stressors by inducing heat shock proteins (HSPs). However, the molecular mechanisms underlying this phenomenon remain elusive. In this study, we established a HA mouse model through intermittent heat stimulation.

View Article and Find Full Text PDF
Article Synopsis
  • Alanine aminotransferase (AlaAT) is an important enzyme in plants that influences key processes like preharvest sprouting, stress tolerance, and nitrogen efficiency.
  • The review highlights advancements in understanding AlaAT's molecular genetics, including gene cloning related to dormancy, which can impact crop yields and plant physiology.
  • Future research and biotechnology strategies, such as genome editing and speed breeding, are expected to enhance the resilience of crop plants against climate change by manipulating AlaAT functions.
View Article and Find Full Text PDF

HSPA5-mediated glioma hypoxia tolerance promotes M2 macrophage polarization under hypoxic microenvironment.

Int Immunopharmacol

December 2024

Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin 150001, Heilongjiang Province, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150001, Heilongjiang Province, China. Electronic address:

Article Synopsis
  • The tumor microenvironment (TME) significantly impacts glioma progression, particularly through features like hypoxia and immunosuppression, although the relationship between hypoxia and immune response in glioma is not fully understood.
  • Researchers identified HSPA5 as a key gene linked to glioma prognosis, associated with higher levels in tumors, poor outcomes, and the promotion of malignant traits via the HIF-1α/HSPA5 pathway.
  • Targeting HSPA5 may offer a new therapeutic approach by reducing hypoxia tolerance and modifying tumor-associated macrophages (TAMs) to an M1 phenotype, potentially enhancing anti-tumor immunity.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!