Parkinson disease occurs due to the depletion of dopaminergic neurons in brain resulting in decreased dopamine level and abnormal protein aggregation. Chrysin is a flavonoid which possesses pharmacological properties against various diseases like hypertension, diabetes, cancer, etc. According to the recent literatures, it is evidenced that chrysin protects mice against Focal Cerebral Ischemia/Reperfusion Injury. The present study aimed to elucidate the effect of chrysin on neuronal restoration in MPTP intoxicated acute mice model. From the results, it is revealed that the pre-treatment with chrysin protected MPTP induced degeneration of nigra-striatal neurons. It is observed that chrysin also ameliorates MPTP induced oxidative stress in mice by upregulating GSH, SOD and downregulating LPO levels. The motor dysfunction is also found to be enhanced which was evidenced through Beam walk, Horizontal grid and vertical grid tests. Pre-treatment with chrysin also averted MPTP induced alterations in neurotrophic factors, inflammatory markers and Dopamine contents. The findings of the present study clearly indicated that the chrysin reversed the neurochemical deficits, oxidative stress and behavioral abnormalities in PD mice and offers promising strategy for the treatment of neurodegenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2019.134382DOI Listing

Publication Analysis

Top Keywords

mptp induced
16
oxidative stress
12
chrysin
8
neurotrophic factors
8
pre-treatment chrysin
8
mptp
5
chrysin restores
4
restores mptp
4
induced
4
induced neuroinflammation
4

Similar Publications

Parkinson's disease (PD) is a prevalent and challenging neurodegenerative disorder, and may involve impaired autophagy. Nuclear factor erythroid-2-related factor 2 (Nrf2) is crucial for regulating autophagy-related genes, maintaining cellular homeostasis. Electroacupuncture (EA), a complementary and alternative therapy for PD, has gained widespread clinical application.

View Article and Find Full Text PDF
Article Synopsis
  • Ripk3 is key in acute lung injury (ALI) by driving endothelial cell damage and inflammation, although the exact mechanisms are not fully understood.
  • Studies using Ripk3-deficient mice revealed that removing Ripk3 improved lung tissue health, decreased inflammation, oxidative stress, and endothelial dysfunction after exposure to lipopolysaccharide (LPS).
  • Ripk3 was found to inhibit the AMPK pathway and promote necroptosis in endothelial cells by affecting mitochondrial function, suggesting it could be a target for new treatments for ALI.
View Article and Find Full Text PDF

Cinnamaldehyde (CA), the primary bioactive compound in cinnamon ( Presl, Lauraceae, ), holds potential therapeutic benefits for Parkinson's disease (PD). To scrutinize the impact and mechanisms of CA on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD, male C57BL/6 mice were randomly allocated to CA (150, 300, and 600 mg/kg), model, Madopar, and control group ( = 12). The Open Field, Pole-jump, and Rotarod experiments assessed exercise capacity and anxiety levels.

View Article and Find Full Text PDF

Parkinson's disease (PD), characterized by progressive degeneration of dopaminergic neurons in substantia nigra, has no disease-modifying therapy. Mesenchymal stem cell (MSC) therapy has shown great promise as a disease-modifying solution for PD. Induced pluripotent stem cell-derived MSC (iMSC) not only has stronger neural repair function, but also helps solve the problem of MSC heterogeneity.

View Article and Find Full Text PDF

[Parkin deletion affects PINK1/Parkin-mediated mitochondrial autophagy to exacerbate neuroinflammation and accelerate progression of Parkinson's disease in mice].

Nan Fang Yi Ke Da Xue Xue Bao

December 2024

Anhui Provincial Center for Neural Regeneration Technology and New Medical Materials Engineering Research, Bengbu Medical University, Bengbu 233000, China.

Objectives: To investigate the role of mitochondrial autophagy disorder caused by deletion of E3 ubiquitin ligase Parkin in neuroinflammation in a mouse model of MPTP-induced Parkinson's disease (PD).

Methods: Wild-type (WT) male C57BL/6 mice and Parkin mice were given intraperitoneal injections with MPTP or PBS for 5 consecutive days, and the changes in motor behaviors of the mice were observed using open field test. The effects of Parkin deletion on PD development and neuroinflammation were evaluated using immunofluorescence and Western blotting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!