Apple trees are extensively cultivated worldwide but are often affected by zinc (Zn) deficiency. Limited knowledge regarding Zn remobilization within fruit crops has hampered the development of efficient strategies for providing adequate amounts of Zn. In the present study, Zn distribution and remobilization were compared among apple trees cultivated under different Zn conditions. Without Zn application, plants showed visible symptoms of Zn deficiency at the shoot tips after 1 year but appeared to grow normally during the first 6 months (early stage of Zn deficiency). Compared with apple plants under sufficient Zn treatment, plants suffering from early-stage Zn deficiency showed preferential Zn distribution to young leaves and higher Zn levels in phloem, demonstrating that hidden Zn deficiency triggers a highly efficient remobilization of Zn in this species. The in vivo Zn-nicotianamine complex in phloem tissues, combined with the significant enhanced expression of MdNAS3 and MdYSL6, suggested a positive role for nicotianamine in the phloem remobilization of Zn. These results strongly suggest that a proportion of Zn in the old leaves of apple trees can be efficiently remobilized by phloem transport to the shoot tips, partially in the form of Zn-nicotianamine, thus protecting apple trees against the early stages of Zn deficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pce.13621 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!