AI Article Synopsis

  • Antimicrobial peptides like Pancreatitis-associated protein (PAP) are crucial for gut health, helping to regulate inflammation and maintain the intestinal barrier against microbes.
  • Researchers tested a recombinant strain of Lactococcus lactis that delivers PAP (LL-PAP) in mouse models of colitis induced by chemicals, showing reduced inflammation severity in the DNBS model, but no effects were seen in the DSS model.
  • The study found that LL-PAP treatment boosted beneficial bacteria that produce butyrate, suggesting a potential role in modifying gut microbiota to alleviate colon inflammation.

Article Abstract

Antimicrobial peptides secreted by intestinal immune and epithelial cells are important effectors of innate immunity. They play an essential role in the maintenance of intestinal homeostasis by limiting microbial epithelium interactions and preventing unnecessary microbe-driven inflammation. Pancreatitis-associated protein (PAP) belongs to Regenerating islet-derived III proteins family and is a C-type (Ca dependent) lectin. PAP protein plays a protective effect presenting anti-inflammatory properties able to reduce the severity of colitis, preserving gut barrier and epithelial inflammation. Here, we sought to determine whether PAP delivered at intestinal lumen by recombinant Lactococcus lactis strain (LL-PAP) before and after chemically induced colitis is able to reduce the severity in two models of colitis. After construction and characterization of our recombinant strains, we tested their effects in dinitro-benzenesulfonic-acid (DNBS) and Dextran sulfate sodium (DSS) colitis model. After the DNBS challenge, mice treated with LL-PAP presented less severe colitis compared with PBS and LL-empty-treated mice groups. After the DSS challenge, no protective effects of LL-PAP could be detected. We determined that after 5 days administration, LL-PAP increase butyrate producer's bacteria, especially Eubacterium plexicaudatum. Based on our findings, we hypothesize that a treatment with LL-PAP shifts the microbiota preventing the severity of colon inflammation in DNBS colitis model. These protective roles of LL-PAP in DNBS colitis model might be through intestinal microbiota modulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899824PMC
http://dx.doi.org/10.1111/1462-2920.14748DOI Listing

Publication Analysis

Top Keywords

colitis model
16
pancreatitis-associated protein
8
lactococcus lactis
8
protective effects
8
colitis
8
reduce severity
8
dnbs colitis
8
ll-pap
6
oral delivery
4
delivery pancreatitis-associated
4

Similar Publications

This study synthesizes a novel three-dimensional (3D) porous coordination polymer (CP), {[Co(L)₀.₅(H₂O)]·NMP·H₂O} (1), via a solvothermal method in a mixed solvent of water and NMP (1-methyl-2-pyrrolidinone), reacting Co(II) ions with H₄L (1,4-bis(5,6-carboxybenzimidazolylmethyl)benzene). The CP exhibits unique fluorescence properties, emitting at 420 nm under UV light excitation at 350 nm, and serves as a carrier for Mesalazine (MSZ) in therapeutic applications.

View Article and Find Full Text PDF

infection (CDI), characterized by colitis and diarrhea, afflicts approximately half a million people in the USA every year, burdening both individuals and the healthcare system. 630Δ is an erythromycin-sensitive variant of the clinical isolate 630 and is commonly used in the research community due to its genetic tractability. 630Δ possesses a point mutation in , an autoregulated transcriptional repressor that regulates oxidative stress resistance genes.

View Article and Find Full Text PDF

Introduction: Ulcerative colitis (UC) is an inflammatory bowel disease characterized by inflammation and ulceration of the digestive tract.

Methods: Photodynamic therapy (PDT) with a novel photosensitizer LD was used to treat UC rat models to explore the therapeutic effect and mechanism of LD-PDT on UC. 16S ribosomal RNA was used to detect the composition of Gut microbiota.

View Article and Find Full Text PDF

Background: Huanglian-ejiao decoction (HED) is a Chinese traditional medicinal formula evolved from the Shanghan Lun (Treatise on Febrile Diseases). However, HED ultimate mechanism of action remained indistinct. Therefore, this study aimed to investigate whether HED could exert anti-inflammatory effects on 2,4,6-Trinitrobenzenesulfonic acid (TNBS)-induced colitis (UC) model through the regulation of CD4T subsets and gut microbiota.

View Article and Find Full Text PDF

A Novel Rat Model for Inflammatory Gut-Brain Interactions in Parkinson's Disease.

Eur J Neurosci

January 2025

Department of Anatomy, Brain Health Research Centre, University of Otago, Dunedin, New Zealand.

Gut inflammation is a salient prodromal feature of Parkinson's disease (PD) implicated in pathologic processes leading to nigrostriatal dopaminergic degeneration. However, existing rodent models of PD are suboptimal for investigating the interaction between gut inflammation and neuropathology. This study aimed to develop a rat model of PD in which gut inflammation exacerbated PD symptoms induced by a parkinsonian lesion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!