Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Optical bioimaging with exogenous luminophores emitting in short-wave infrared spectral region (SWIR, ~ 1000-1700 nm) is a rapidly developing field, and the development of multiple SWIR-photoluminescent nanoprobes has recently been reported. In this regard, hyperspectral imaging (HSI), combined with unmixing algorithms, is a promising tool that can allow for efficient multiplexing of the SWIR-emitting nanoagents by their photoluminescence (PL) spectral profiles. The SWIR HSI technique reported here is developed to multiplex two types of nanoprobes: polymeric nanoparticles doped with organic dye (PNPs) and rare-earth doped fluoride nanoparticles (RENPs). Both types of nanoprobes exhibit PL in the same spectral range (~ 900-1200 nm), which hinders spectral separation of PL with optical filters and limits possibilities for their multiplexed imaging in biological tissues. By applying SWIR HSI, we exploited differences in the PL spectral profiles and achieved the spectrally selective and sensitive imaging of the PL signal from every type of nanoparticles. Unmixing of acquired data allowed for multiplexing of the spectrally overlapping nanoprobes by their PL profile. Both quantitative and spatial distribution for every type of nanoparticles were obtained from their mixed suspensions. Finally, the SWIR HSI technique with unmixing protocol was applied to in vivo imaging of mice subcutaneously injected with PNPs and RENPs. The applicability of hyperspectral techniques to multiplex nanoprobes in the in vivo imaging was successfully demonstrated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6642248 | PMC |
http://dx.doi.org/10.1186/s11671-019-3068-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!