Eucalyptus wood is the primary source of fibers to produce paper and cellulose in South American countries. The major by-product generated in the cellulose industry is sawdust derived from chip wood production, which is designated as Eucalyptus by-product (EB). The xylooligosaccharides (XOS) are xylose-based oligomers with proven effects over maintenance and stimulation of beneficial human gut bacteria. This study reported the EB extraction and characterization along with an assessment of hemicellulose hydrolysis using commercial xylanases to produce XOS. Hemicellulose derived from extracted and NaClO pretreated (HEEBPT) presented xylan content of 55%, which was similar to 58.5% found in commercial Birchwood hemicellulose (CBH). The enzymatic hydrolysis of HEEBPT and CBH presented 30% as maximum conversion of xylan into XOS without significant difference among the enzymatic extracts evaluated. The XOS production from EB was proven as a technically feasible alternative to recover a value-added product from hemicellulosic fraction generated in the cellulose industry. However, lignin removal with NaClO from EB affects the feasibility of an industrial process because they generate toxic compounds in the pretreatment step. Thus, further studies with alternative reagents, such as ionic liquids, are required to asses selectively lignin removal from EB. Graphical Abstract.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-019-03076-0 | DOI Listing |
BMC Nephrol
January 2025
Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon.
Background And Hypothesis: Gut dysbiosis characterized by an imbalance in pathobionts (Enterobacter, Escherichia and Salmonella) and symbionts (Bifidobacterium, Lactobacillus and Prevotella) can occur during chronic kidney disease (CKD) progression. We evaluated the associations between representative symbionts (Bifidobacterium and Lactobacillus) and pathobionts (Enterobacteriaceae) with kidney function in persons with autosomal dominant polycystic kidney disease (ADPKD).
Methods: In this cross-sectional study, 29 ADPKD patients were matched to 15 controls at a 2:1 ratio.
Sci Rep
January 2025
Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al Ahsa, 31982, Saudi Arabia.
The spent black tea extract was utilized in order to synthesize the spent black tea silver nanoparticles (SBT-AgNPs). Various parameters were tested to yield the best production of SBT-AgNPs. The characterization was conducted by X-Ray diffraction, Scanning electron microscopy, Zeta potential and energy dispersive X-ray (EDX).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Nanotechnology, Faculty of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran. Electronic address:
Fire blight, caused by Erwinia amylovora, is a significant threat to fruit crops, with limited biocontrol methods. This study aimed to develop a nanosystem using mesoporous silica nanoparticles (MSNs) loaded with a phenolic plant extract (ZP) derived from Myrtus communis, Thymus vulgaris, and Curcuma longa, and coated with natural biopolymers Gum Tragacanth (GT) and sodium alginate (SA). The MSNs were synthesized and characterized by XRD, FTIR, and TEM, exhibiting a specific surface area of about 750 m/g and an average pore diameter of 5 nm.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Campus of Pici, Zip Code 60440-900 Fortaleza, CE, Brazil. Electronic address:
The ongoing problem of an increasing resistance of Candida spp. to available antifungals, has made it necessary the search for new therapeutic alternatives. The aim of this work was to develop a microsphere based on Caesalpinia ferrea galactomannan and Spondias purpurea L.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, PR China; Engineering Research Center of Plant Food Processing Technology, Ministry of Education, Qiqihar 161006, PR China. Electronic address:
This study aimed to establish a microwave-assisted method (MAE) for the efficient extraction of polysaccharides from dandelion roots. This study investigated the molecular structure and bioactivity of the polysaccharides from dandelion roots. Extraction conditions were optimized using response surface methodology (RSM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!