Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Novel two-dimensional materials have emerged as hybrid structures that combine graphene and hexagonal boron nitride (h-BN) domains. During their growth process, structural defects such as vacancies and change of atoms connectivity are unavoidable. In the present study, we use first-principle calculations to investigate the electronic structure of graphene domains endowed with a single carbon atom vacancy or Stone-Wales defects in h-BN sheets. The results show that both kinds of defects yield localized states within the bandgap. Alongside this change in the bandgap configuration, it occurs a splitting of the spin channels in such a way that electrons with up and down spins populate different energy levels above and below the Fermi level, respectively. Such a spin arrangement is associated to lattice magnetization. Stone-Wales defects solely point to the appearance of new intragap levels. These results demonstrated that vacancies could significantly affect the electronic properties of hybrid graphene/h-BN sheets. Graphical Abstract A Boron-Nitride sheet doped with a vacancy endowed Carbon domain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-019-4093-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!