Infectious pancreatic necrosis (IPN) is a viral disease with considerable negative impact on the rainbow trout () aquaculture industry. The aim of the present work was to detect genomic regions that explain resistance to infectious pancreatic necrosis virus (IPNV) in rainbow trout. A total of 2,278 fish from 58 full-sib families were challenged with IPNV and 768 individuals were genotyped (488 resistant and 280 susceptible), using a 57K SNP panel Axiom, Affymetrix. A genome-wide association study (GWAS) was performed using the phenotypes time to death (TD) and binary survival (BS), along with the genotypes of the challenged fish using a Bayesian model (Bayes C). Heritabilities for resistance to IPNV estimated using genomic information, were 0.53 and 0.82 for TD and BS, respectively. The Bayesian GWAS detected a SNP located on chromosome 5 explaining 19% of the genetic variance for TD. The proximity of Sentrin-specific protease 5 (SENP5) to this SNP makes it a candidate gene for resistance against IPNV. In case of BS, a SNP located on chromosome 23 was detected explaining 9% of the genetic variance. However, the moderate-low proportion of variance explained by the detected marker leads to the conclusion that the incorporation of all genomic information, through genomic selection, would be the most appropriate approach to accelerate genetic progress for the improvement of resistance against IPNV in rainbow trout.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723134PMC
http://dx.doi.org/10.1534/g3.119.400463DOI Listing

Publication Analysis

Top Keywords

rainbow trout
16
infectious pancreatic
12
pancreatic necrosis
12
resistance ipnv
12
genome-wide association
8
resistance infectious
8
necrosis virus
8
ipnv rainbow
8
snp located
8
located chromosome
8

Similar Publications

Long dsRNA induces the expression of type I interferons (IFNs) and IFN-stimulated genes (ISGs) to establish an antiviral state. When induced prophylactically, this antiviral state can reduce the severity and mortality of viral infections. One of the limiting factors in delivering dsRNA in animal models is the lack of an effective carrier that protects the dsRNA from degradation in the extracellular space.

View Article and Find Full Text PDF

Aclonifen is a diphenyl ether herbicide being included in the list of priority substances. Nevertheless, the data related to its sublethal effects on fish are limited. Therefore, the present study has been carried out to investigate the toxic effects of aclonifen in juvenile following 24, 48, 72 and 96 hours of application to sublethal concentrations of 12.

View Article and Find Full Text PDF

Understanding the mechanisms that underlie the adaptive response of ectotherms to rising temperatures is key to mitigate the effects of climate change. We assessed the molecular and physiological processes that differentiate between rainbow trout (Oncorhynchus mykiss) with high and low tolerance to acute thermal stress. To achieve our goal, we used a critical thermal maximum trial in two strains of rainbow trout to elicit loss of equilibrium responses to identify high and low tolerance fish.

View Article and Find Full Text PDF

Salmonids, classified as physostomous fish, maintain buoyancy by ingesting air to inflate their swim bladders. Long-term submergence has been shown to cause body imbalance and reduced growth performance in these fish. Previous studies have demonstrated that extended photoperiod can promote growth in salmonids.

View Article and Find Full Text PDF

In many eukaryotes, meiotic recombination occurs preferentially at discrete sites, called recombination hotspots. In various lineages, recombination hotspots are located in regions with promoter-like features and are evolutionarily stable. Conversely, in some mammals, hotspots are driven by PRDM9 that targets recombination away from promoters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!