Upregulation of p53 through induction of MDM2 degradation: Anthraquinone analogs.

Bioorg Med Chem

Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, United States. Electronic address:

Published: September 2019

In a previous study, a novel anthraquinone analog BW-AQ-101 was identified as a potent inducer of MDM2 degradation, leading to upregulation of p53 and apoptosis in cell culture studies. In animal models of acute lymphocytic leukemia, treatment with BW-AQ-101 led to complete disease remission. In this study, we systematically investigated the effect of substitution patterns of the core anthraquinone scaffold. Through cytotoxicity evaluation in two leukemia cell lines, the structure-activity relationship of thirty-two analogs has been examined. Several analogs with comparable or improved potency over BW-AQ-101 have been identified. Western-blot assays verified the effect of the potent compounds on the MDM2-p53 axis. The study also suggests new chemical space for further optimization work.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2019.07.019DOI Listing

Publication Analysis

Top Keywords

upregulation p53
8
mdm2 degradation
8
bw-aq-101 identified
8
p53 induction
4
induction mdm2
4
degradation anthraquinone
4
anthraquinone analogs
4
analogs previous
4
previous study
4
study novel
4

Similar Publications

Rituximab combined with systemic chemotherapy significantly improves the rate of complete response in B-cell lymphomas. However, acquired rituximab resistance develops in most patients leading to relapse. The mechanisms underlying rituximab resistance are not well-understood.

View Article and Find Full Text PDF

The mechanism by which DNA-damage affects self-renewal and pluripotency remains unclear. DNA damage and repair mechanisms have been largely elucidated in mutated cancer cells or simple eukaryotes, making valid interpretations on early development difficult. Here we show the impact of ionizing irradiation on the maintenance and early differentiation of mouse embryonic stem cells (ESCs).

View Article and Find Full Text PDF

Downregulation of FcRn promotes ferroptosis in herpes simplex virus-1-induced lung injury.

Cell Mol Life Sci

January 2025

School of Basic Medical Sciences, Xinxiang Medical University, #601 Jinsui Road, Xinxiang, 453003, Henan, China.

Herpes simplex virus type I (HSV-1) infection is associated with lung injury; however, no specific treatment is currently available. In this study, we found a significant negative correlation between FcRn levels and the severity of HSV-1-induced lung injury. HSV-1 infection increases the methylation of the FcRn promoter, which suppresses FcRn expression by upregulating DNMT3b expression.

View Article and Find Full Text PDF

The activation of acid-sensing ion channel 1a (ASIC1a) in response to extracellular acidification leads to an increase in extracellular calcium influx, thereby exacerbating the degeneration of articular chondrocytes in rheumatoid arthritis (RA). It has been suggested that the inhibition of extracellular calcium influx could potentially impede chondrocyte ferroptosis. The cystine transporter, solute carrier family 7 member 11 (SLC7A11), is recognized as a key regulator of ferroptosis.

View Article and Find Full Text PDF

Background: Cucurbitacin E glucoside (CEG), a prominent constituent of Cucurbitaceae plants, exhibits notable effects on cancer cell behavior, including inhibition of invasion and migration, achieved through mechanisms such as apoptosis induction, autophagy, cell cycle arrest, and disruption of the actin cytoskeleton.

Objective: Melanoma, the fastest-growing malignancy among young individuals in the United States and the predominant cancer among young adults aged 25 to 29, poses a significant health threat. This study aims to elucidate the apoptotic mechanism of CEG against the melanoma cancer cell line (A375).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!