Population groups vulnerable to adverse effects of traffic-related air pollution correspond to children, pregnant women and elderly. Despite these effects, literature is limited in terms of studies focusing on these groups and a reason often cited is the limited information on their mobility important for exposure assessment. The current study presents a method for assessing individual-level exposure to traffic-related air pollution by integrating mobility patterns tracked by global positioning system (GPS) devices with dynamics of air pollutant concentrations. The study is based on a pool of 17 pregnant women residing in Hidalgo County, Texas. The traffic-related particulate matter with diameter of less than 2.5 micrometer (PM) emissions and air pollutant concentrations are predicted using MOVES and AERMOD models, respectively. The daily average traffic-related PM concentration was found to be 0.32 µg/m, with the highest concentration observed in transit (0.56 µg/m), followed by indoors (0.29 µg/m), and outdoor (0.26 µg/m) microenvironment. The obtained exposure levels exhibited considerable variation between time periods, with higher levels during peak commuting periods, close to the US-Mexico border region and lower levels observed during midday periods. The study also assessed if there is any difference between traffic-related dynamic exposure, based on time-varying mobility patterns, and static exposure, based solely on residential locations, and found a difference of 9%, which could be attributed to the participants' activity patterns being focused mostly indoors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651470 | PMC |
http://dx.doi.org/10.3390/ijerph16132433 | DOI Listing |
Menopause
January 2025
Department of Child, Family, and Population Health Nursing, University of Washington, Seattle, WA.
Objective: This study aimed to determine whether exposure to traffic-related air pollution (TRAP) is associated with depressive symptoms while also characterizing the contribution of key explanatory factors related to sociodemographics and health. In addition, it aimed to also explore the role of reproductive health as a pathway through which exposure to TRAP may relate to depressive symptoms.
Methods: Participants were 688 healthy reproductive-age women in the Ovarian Aging Study.
Sci Total Environ
January 2025
Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain.
The maritime transport sector poses significant air quality concerns, particularly in nearby cities. Ultrafine particles (UFP, diameter < 100 nm) are of particular concern due to their potential health impacts. This study measured particle number concentrations (PNC), size distributions (PNSD), and other pollutants including particulate matter (PM), nitrogen oxides (NO), black carbon (BC), sulfur dioxide (SO) and ozone (O), organic markers and trace elements at a major European harbor and an urban background (UB) location.
View Article and Find Full Text PDFEnviron Health Perspect
January 2025
BMC Public Health
January 2025
Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong, PR China.
Background: Traffic-related air pollution especially in highly socioeconomically developed megacity is usually considered as a severe problem leading to inevitable adverse health outcomes. This study aimed to investigate the associations between traffic-related air pollutants with risk of dry eye disease (DED) outpatient visits in a megacity (Guangzhou) along the subtropical coast in South China.
Methods: Daily data on DED outpatient visits and environmental variables from 1 January 2014 to 31 December 2020 in Guangzhou were obtained.
J Environ Manage
January 2025
Department of Plant Biology and Ecology, University of Seville, Avda. Reina Mercedes S/n, Apartado de Correos, 1095, 41012, Sevilla, Spain. Electronic address:
Urban environments are usually polluted by anthropogenic activities like traffic, a major source of potentially toxic elements (PTEs), and ornamental plant species may reduce contamination by trapping traffic-related air pollutants in their leaves. The purpose of this study was tested the trapping pollutant capacity of four species commonly used in green areas of Seville city (SW Spain) to better choose species in urban green planning. Composition of particulate matter (PM) obtained from foliar surfaces (sPM) and wax-included (wPM) was determined by EDX-SEM analysis in samples from different city locations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!