An original and simple fabrication process to produce thin porous metal films on selected substrates is reported. The fabrication process includes the deposition of a thin layer of gold on a substrate, spin coating of a graphene oxide dispersion, etching the gold film through the graphene oxide layer, and removing the graphene oxide layer. The porosity of the thin gold film is controlled by varying the etching time, the thickness of the gold film, and the concentration of the graphene oxide dispersion. Images by scanning electron and metallurgical microscopes show a continuous gold film with random porosity formed on the substrate with a porosity size ranging between hundreds of nanometers to tens of micrometers. This general approach enables the fabrication of porous metal films using conventional microfabrication techniques. The proposed process is implemented to fabricate electrodes with patterned porosity that are used in a microfluidic system to manipulate living cells under dielectrophoresis. Porous electrodes are found to enhance the magnitude and spatial distribution of the dielectrophoretic force.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678361 | PMC |
http://dx.doi.org/10.3390/ma12142305 | DOI Listing |
Nanomaterials (Basel)
December 2024
Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China.
Cisplatin-based platinum compounds are important clinical chemotherapeutic agents that participate in most tumor chemotherapy regimens. Through density-functional theory calculations, the formation and stability of the inorganic oxide carrier, the mechanisms of the hydrolysis reaction of the activated platinum compound, and its binding mechanism with DNA bases can be studied. The higher the oxidation state of Pt (II to IV), the more electrons transfer from the magnesia-gold composite material to the platinum compound.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Division of Physics, Engineering, Mathematics and Computer Sciences and Optical Science Center for Applied Research, Delaware State University, Dover, DE 19901, USA.
This study offers a comprehensive summary of the current states as well as potential future directions of transparent conducting oxides (TCOs), particularly tin-doped indium oxide (ITO), the most readily accessible TCO on the market. Solar cells, flat panel displays (FPDs), liquid crystal displays (LCDs), antireflection (AR) coatings for airbus windows, photovoltaic and optoelectronic devices, transparent p-n junction diodes, etc. are a few of the best uses for this material.
View Article and Find Full Text PDFAppl Spectrosc
December 2024
Chair of Waste Processing Technology and Waste Management, Department of Environmental and Energy Process Engineering, Montanuniversitaet Leoben, Leoben, Austria.
The low thickness of plastic films poses a challenge when using near-infrared (NIR) spectroscopy as it affects the spectral quality and classification. This research focuses on offering a solution to the challenge of classifying multilayer plastic film materials with a focus on polyolefin multilayer plastics. It presents the importance of spectral quality on accurate classification.
View Article and Find Full Text PDFMikrochim Acta
December 2024
School of Materials and Chemical Engineering, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China.
Silver nanowire (Ag NW)/gold nanosphere (Au NS) binary plasma films were prepared using plasma coupling between Ag NWs and Au NSs. The plasma films formed by combining these two noble metals showed better sensitivity for SERS detection with a minimum detection concentration of 10 M for R6G compared to pure Ag NWs or Au NSs. After rational optimisation of the substrate preparation process, the substrate showed good homogeneity, reproducibility and stability.
View Article and Find Full Text PDFACS Earth Space Chem
December 2024
University of Iowa, Iowa City, Iowa state 52242, United States.
Environmental films form when airborne particles and molecular species adsorb on solid surfaces. Recent studies have characterized these films but overlook how collection methods and host-surface character (orientation, chemical functionality, or height) change the deposition process. In this work, environmental films are collected at a rural location on gold and silicon surfaces (water contact angles of ca.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!