Purpose: Blood flow in the optic nerve head (ONH) is known to be reduced in eyes with advanced glaucoma. However, experimental results from non-human primates suggest an initial increase in ONH blood flow at the earliest stages of damage. This study assesses flow and pulsatile hemodynamics across a range of severities to test the hypothesis that this also occurs in human glaucoma.
Methods: Laser speckle flowgraphy was used to measure average mean blur rate (MBRave) within ONH tissue (a correlate of capillary blood flow) and the pulsatile waveform in 93 eyes with functional loss and 74 glaucoma suspect/fellow eyes without functional loss. These were compared against results from 92 healthy control eyes. Parameters produced by the instrument's software were age-corrected, then compared between groups using generalized estimating equation models.
Results: The mean MBRave in the control eyes was 12.5 units. In glaucoma suspect/fellow eyes, the mean was 16.4 units, higher with P < 0.0001. In eyes with functional loss, the mean was 13.8 units, lower than eyes without functional loss with P < 0.0001, although still higher than control eyes with P = 0.0096. Analysis of the pulsatile waveform suggested that the deceleration in flow as it approaches its maximum across the cardiac cycle was delayed in glaucoma.
Conclusions: Blood flow within ONH capillaries was higher in glaucoma suspect eyes than in healthy controls. It was less elevated in eyes that had developed functional loss. The mechanisms causing these changes and their relation to concurrent changes in pulsatile hemodynamics remain under investigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6645706 | PMC |
http://dx.doi.org/10.1167/iovs.19-27389 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!