Objective: Traditionally, diffusion MRI (dMRI) has been performed in parallel with high-resolution conventional MRI, which requires long scan times and may require sedation or general anesthesia in infants and young children. Conversely, fast brain MRI permits image acquisition without the need for sedation, although its short pulse sequences, susceptibility to motion artifact, and contrast resolution have limited its use to assessing ventricular size or major structural variations. Here, the authors demonstrate the feasibility of leveraging a 3-direction fast brain MRI protocol to obtain reliable dMRI measures.
Methods: Fast brain MRI with 3-direction dMRI was performed in infants and children before and after hydrocephalus treatment. Regions of interest in the posterior limbs of the internal capsules (PLICs) and the genu of the corpus callosum (gCC) were drawn on diffusion-weighted images, and mean diffusivity (MD) data were extracted. Ventricular size was determined by the frontal occipital horn ratio (FOHR). Differences between and within groups pre- and posttreatment, and FOHR-MD correlations were assessed.
Results: Of 40 patients who met inclusion criteria (median age 27.5 months), 15 (37.5%), 17 (42.5%), and 8 (20.0%) had posthemorrhagic hydrocephalus (PHH), congenital hydrocephalus (CH), or no intracranial abnormality (controls), respectively. A hydrocephalus group included both PHH and CH patients. Prior to treatment, the FOHR (p < 0.001) and PLIC MD (p = 0.027) were greater in the hydrocephalus group than in the controls. While the mean gCC MD in the hydrocephalus group (1.10 × 10-3 mm2/sec) was higher than that of the control group (0.98), the difference was not significant (p = 0.135). Following a median follow-up duration of 14 months, decreases in FOHR, PLIC MD, and gCC MD were observed in the hydrocephalus group and were similar to those in the control group (p = 0.107, p = 0.702, and p = 0.169, respectively). There were no correlations identified between FOHR and MDs at either time point.
Conclusions: The utility of fast brain MRI can be extended beyond anatomical assessments to obtain dMRI measures. A reduction in PLIC and gCC MD to levels similar to those of controls was observed within 14 months following shunt surgery for hydrocephalus in PHH and CH infants. Further studies are required to assess the role of fast brain dMRI for assessing clinical outcomes in pediatric hydrocephalus patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982356 | PMC |
http://dx.doi.org/10.3171/2019.5.PEDS18596 | DOI Listing |
Elife
January 2025
Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Canada.
Locomotion is controlled by spinal circuits that interact with supraspinal drives and sensory feedback from the limbs. These sensorimotor interactions are disrupted following spinal cord injury. The thoracic lateral hemisection represents an experimental model of an incomplete spinal cord injury, where connections between the brain and spinal cord are abolished on one side of the cord.
View Article and Find Full Text PDFAnal Chem
January 2025
Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
Microelectrodes offer exceptional sensitivity, rapid response, and versatility, making them ideal for real-time detection and monitoring applications. Photoelectrochemical (PEC) sensors have shown great value in many fields due to their high sensitivity, fast response, and ease of operation. Nevertheless, conventional PEC sensing relies on cumbersome external light sources and bulky electrodes, hindering its miniaturization and implantation, thereby limiting its application in real-time disease monitoring.
View Article and Find Full Text PDFAlterations in energy metabolism may drive fatigue in older age, but prior research primarily focused on skeletal muscle energetics without assessing other systems, and utilized self-reported measures of fatigue. We tested the association between energy metabolism in the brain and an objective measure of fatigability in the Study of Muscle, Mobility and Aging (N=119, age 76.8±4.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea.
Fast-scan cyclic voltammetry (FSCV) is a widely used electrochemical technique to measure the phasic response of neurotransmitters in the brain. It has the advantage of reducing tissue damage to the brain due to the use of carbon fiber microelectrodes as well as having a high temporal resolution (10 Hz) sufficient to monitor neurotransmitter release in vivo. During the FSCV experiment, the surface of the carbon fiber microelectrode is inevitably changed by the fouling effect.
View Article and Find Full Text PDFClin Chem Lab Med
January 2025
Deparment of Laboratory Medicine, 16268 La Paz University Hospital, Madrid, Spain.
Objectives: Cardiac biomarkers are useful for the diagnostic and prognostic assessment of myocardial injury (MI) and heart failure. By measuring specific proteins released into the bloodstream during heart stress or damage, these biomarkers help clinicians detect the presence and extent of heart injury and tailor appropriate treatment plans. This study aims to provide robust biological variation (BV) data for cardiac biomarkers in athletes, specifically focusing on those applied to detect or exclude MI, such as myoglobin, creatine kinase-myocardial band (CK-MB) and cardiac troponins (cTn), and those related to heart failure and cardiac dysfunction, brain natriuretic peptide (BNP) and N-terminal brain natriuretic pro-peptide (NT-proBNP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!