As an important technology for purifying and recycling agricultural wastewater, storing multiple-pond constructed wetlands (SMCWs) are widely used in the treatment of non-point source pollution. However, the influences of design configuration (surface area, volume, flow path, aspect ratio, water depth, percent vegetation cover and planting pattern) on pollution mitigation in SMCWs are still underexplored. To improve the sustainability of constructed wetlands, the removal performances of four groups of SMCWs were assessed through multiphasic analyses. The maximum removal efficiencies of nitrogen and phosphorus were 63.7% and 64.0%, respectively. Higher mass removal rates per square meter (MRR) and mass removal rates per cubic meter (MRR) were observed in ecological floating treatment wetlands (EFTWs). Compared with RE, the interception performances of deep-water SMCWs were more clearly described by using MRR and MRR. EFTWs with good plant configurations (mixed planting, 60-80% plant cover) were recommended in deep-water SMCWs (water depth > 1.5 m).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2019.121748 | DOI Listing |
Sci Rep
January 2025
School of Geography and Environment, Liaocheng University, Liaocheng, 252059, Shandong, China.
The complex topography of the mountain cities leads to uneven distribution of land resources. Currently, available studies mainly focuse on land use and landscape patterns (LU and LP) in plains or plateaus. Thus, it is necessary to carry out an analysis of the drivers of changes in LU and LP in mountain cities.
View Article and Find Full Text PDFLett Appl Microbiol
January 2025
Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India.
Azo dyes constitute 60-70% of commercially used dyes and are complex, carcinogenic, and mutagenic pollutants that negatively impact soil composition, water bodies, flora, and fauna. Conventional azo dye degradation techniques have drawbacks such as high production and maintenance costs, use of hazardous chemicals, membrane clogging, and sludge generation. Constructed Wetland-Microbial Fuel Cells (CW-MFCs) offer a promising sustainable approach for the bio-electrodegradation of azo dyes from textile wastewater.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
In constructed wetlands (CWs) with multiple plant communities, population structure may change over time and these variations may ultimately influence water quality. However, in CWs with multiple plant communities, it is still unclear how population structure may change over time and how these variations ultimately influence water quality. Here, we established a CW featuring multiple plant species within a polder to investigate the variation in plant population structure and wastewater treatment effect for drainage water over the course of one year.
View Article and Find Full Text PDFMicroorganisms
January 2025
Institute of Natural Resources and Ecology, Heilongjiang Academy of Science, Harbin 150040, China.
Increasing nitrogen (N) addition induces soil nutrient imbalances and is recognized as a major regulator of soil microbial communities. However, how soil bacterial abundance, diversity, and community composition respond to exogenous N addition in nutrient-poor and generally N-limited regions remains understudied. In this study, we investigated the effects of short-term exogenous N additions on soil bacterial communities using quantitative polymerase chain reaction (PCR) and Illumina Miseq sequencing in an in situ N addition field experiment.
View Article and Find Full Text PDFWater Res
January 2025
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China. Electronic address:
Iron-based constructed wetlands (ICWs) displayed great potential in deep nitrogen elimination for low-polluted wastewater. However, the unsatisfactory denitrification performance caused by the limited solubility and sluggish activity of iron substrates needs to be improved in an eco-effective manner. To fill this gap, the bioavailability of iron substrates (iron scraps) affected by wetland biomass-derived carbon materials with potential conductivity were explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!