Cancer is a heterogeneous disease, confounding the identification of relevant markers and drug targets. Network-based analysis is robust against noise, potentially offering a promising approach towards biomarker identification. We describe here the application of two network-based methods, qPSP (Quantitative Proteomics Signature Profiling) and PFSNet (Paired Fuzzy SubNetworks), in an intra-tissue proteome data set of prostate tissue samples. Despite high basal variation, we find that traditional statistical analysis may exaggerate the extent of heterogeneity. We also report that network-based analysis outperforms protein-based feature selection with concomitantly higher cross-validation accuracy. Overall, network-based analysis provides emergent signal that boosts sensitivity while retaining good precision. It is a potential means of circumventing heterogeneity for stable biomarker discovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jprot.2019.103446 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!