A complete experimental and theoretical study has been carried out for aromatic and quinoidal perylene-based bridges substituted with bis(diarylamine) and bis(arylimine) groups respectively. The through-bridge inter-redox site electronic couplings (V ) have been calculated for their respective mixed-valence radical cation and radical anion species. The unusual similitudes of the resulting V values for the given structures reveal the intervention of molecular shapes with balanced semi-quinoidal/semi-aromatic structures in the charge delocalization. An identical molecular object equally responding to the injection of either positive or negative charges is rare in the field of organic π-conjugated molecules. However, once probed herein for perylene-based systems, it can be extrapolated to other π-conjugated bridges. As a result, this work opens the door to the rational design of true ambipolar bulk and molecular conductors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201905657 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, The University of Hong Kong, Hong Kong 999077, P. R. China.
Electron donor-acceptor complexes are commonly employed to facilitate photoinduced radical-mediated organic reactions. However, achieving these photochemical processes with catalytic amounts of donors or acceptors can be challenging, especially when aiming to reduce catalyst loadings. Herein, we have unveiled a framework-based heterogenization approach that significantly enhances the photoredox activity of perylene diimide species in radical addition reactions with alkyl silicates by promoting faster and more efficient electron donor-acceptor complex formation.
View Article and Find Full Text PDFMater Horiz
January 2025
School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China.
Metal-free photocatalysts derived from earth-abundant elements have drawn significant attention owing to their ample supply for potential large-scale applications. However, it is still challenging to achieve highly efficient photocatalytic performance owing to their sluggish charge separation and lack of active catalytic sites. Herein, we designed and constructed a series of covalently bonded organic semiconductors to enhance water splitting and phenol degradation.
View Article and Find Full Text PDFAdv Mater
January 2025
College of Chemistry, Nanchang University, Nanchang, 330031, China.
A strong n-type perovskite layer is crucial in achieving high open-circuit voltage (V) and power conversion efficiency (PCE) in the p-i-n solar cells, as the weak n-type perovskites result in a loss of V, and the p-type perovskites contain numerous electron traps that cause the severe carrier recombination. Here, three types of perylene diimide (PDI) based small molecule dopants with different dimensions, including 1D-PDI, 2D-PDI, and 3D-PDI are designed, to produce heavier n-type perovskites. The PDI-based molecules with Selenium atoms have a strong electron-donating ability, effectively enlarging the quasi-Fermi level splitting within the perovskites.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA.
We incorporated Espaloma forcefield parameterization into MoSDeF tools for performing molecular dynamics simulations of organic molecules with HOOMD-Blue. We compared equilibrium morphologies predicted for perylene and poly-3-hexylthiophene (P3HT) with the ESP-UA forcefield in the present work against prior work using the OPLS-UA forcefield. We found that, after resolving the chemical ambiguities in molecular topologies, ESP-UA is similar to GAFF.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
East China University of Science and Technology, School of Chemistry and Molecular Engineering, CHINA.
Photoacid generators (PAGs) are invaluable molecular tools that exhibited tremendous potential in emerging interdisciplinary researches of life-science, nanotechnology and smart materials. However, current PAGs are primarily mono-functional in terms of acid generation and rely on UV/deep-blue light excitation, posing a fundamental hurdle to their broader adoption. Developing cooperatively functioned PAGs with long-wavelength light responsiveness presents a formidable challenge due to the absence of suitable molecular scaffolds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!