Gold nanostructures have important applications in nanoelectronics, nano-optics, and in precision metrology due to their intriguing optoelectronic properties. These properties are governed by the bulk band structure but to some extent are tunable via geometrical resonances. Here we show that the band structure of gold itself exhibits significant size-dependent changes already for mesoscopic critical dimensions below 30 nm. To suppress the effects of geometrical resonances and grain boundaries, we prepared atomically flat ultrathin films of various thicknesses by utilizing large chemically grown single-crystalline gold platelets. We experimentally probe thickness-dependent changes of the band structure by means of two-photon photoluminescence and observe a surprising 100-fold increase of the nonlinear signal when the gold film thickness is reduced below 30 nm allowing us to optically resolve single-unit-cell steps. The effect is well explained by density functional calculations of the thickness-dependent 2D band structure of gold.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.122.246802 | DOI Listing |
J Fluoresc
January 2025
Department of Physics \ Collage of Sciences, University of Kufa, Najaf, Iraq.
This research utilizes density functional theory to investigate the ground and excited-state properties of a new series of organic dyes with D-π-A configurations (D1-D6) for their potential application in dye-sensitized solar cells. The study focuses on modifying these dyes using various functional groups as π-bridges to optimize their electronic properties and improve their efficiency as sensitizers in DSSCs. The frontier molecular orbitals (HOMO and LUMO) were analysed to evaluate electron transfer properties.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Physics, Rutgers University, Newark, New Jersey 07102, United States of America.
Graph Neural Networks (GNNs) have emerged as powerful tools for predicting material properties, yet they often struggle to capture many-body interactions and require extensive manual feature engineering. Here, we present EOSnet (Embedded Overlap Structures for Graph Neural Networks), a novel approach that addresses these limitations by incorporating Gaussian Overlap Matrix (GOM) fingerprints as node features within the GNN architecture. Unlike models that rely on explicit angular terms or human-engineered features, EOSnet efficiently encodes many-body interactions through orbital overlap matrices, providing a rotationally invariant and transferable representation of atomic environments.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China.
A bolt loosening detection method based on the summation coefficient of the absolute spectrum ratio technique is proposed to address the prevalent issue of bolt loosening in mechanical connections. This proposed method involves initially collecting vibration and rotation speed signals of the motor bolt connection structure, acquiring the baseline spectrum curve of a healthy structure and the spectrum curves of non-healthy structures under different degrees of bolt looseness through chirp Fourier transform (CFT). Subsequently, the spectrum ratio curves between healthy and non-healthy structures are calculated for different degrees of bolt loosening, and then the Summation Coefficient of Absolute Spectrum Ratio (SCASR) is defined to indicate the looseness.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electronics and Communication Engineering, SRM University, Guntur 522240, Andhra Pradesh, India.
We propose herein a metamaterial (MM) dual-band THz sensor for various biomedical sensing applications. An MM is a material engineered to have a particular property that is rarely observed in naturally occurring materials with an aperiodic subwavelength arrangement. MM properties across a wide range of frequencies, like high sensitivity and quality factors, remain challenging to obtain.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Mechanical Engineering and Energy Technology, Lucerne University of Applied Sciences and Arts, CH-6048 Horw, Switzerland.
Automated agricultural robots are becoming more common with the decreased cost of sensor devices and increased computational capabilities of single-board computers. Weeding is one of the mundane and repetitive tasks that robots could be used to perform. The detection of weeds in crops is now common, and commercial solutions are entering the market rapidly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!