Effects of ionizing irradiation and interface backscatter on human mesenchymal stem cells cultured on titanium surfaces.

Eur J Oral Sci

Department of Prosthodontics, Faculty for Dentistry, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway.

Published: December 2019

Radiotherapy to the head and neck region negatively influences the osseointegration and survival of dental implants. The effects of cobalt 60 ( Co) ionizing radiation and the impact of backscatter rays were investigated on human mesenchymal stem cells cultured on titanium surfaces. Bone marrow-derived human mesenchymal stem cells were seeded on titanium (Ti), fluoride-modified titanium (TiF), and tissue culture plastic. Cells were exposed to ionizing γ-radiation in single doses of 2, 6, or 10 Gy using a Co source. Density and distribution of cells were evaluated using confocal laser-scanning microscopy, 21 d post-irradiation. Lactate dehydrogenase concentration and the levels of total protein and cytokines/chemokines were measured in the cell-culture medium on days 1, 3, 7, 14, and 21 post-irradiation. Unirradiated cells were used as the control. Irradiation had no effect on cell viability, collagen and actin expression, or cell distribution, but induced an initial increase in the secretion of interleukin (IL)-6, IL-8, monocyte chemotactic protein 1 (MCP-1), and vascular endothelial growth factor (VEGF), followed by a decrease in secretion after 3 or 7 d. Irradiation resulted in secretion of a lower amount of all analytes examined compared with controls on day 21, irrespective of radiation dose and growth surface. Backscattering from titanium did not influence the cell response significantly, suggesting a clinical potential for achieving successful osseointegration of dental implants placed before radiotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1111/eos.12654DOI Listing

Publication Analysis

Top Keywords

human mesenchymal
12
mesenchymal stem
12
stem cells
12
cells cultured
8
cultured titanium
8
titanium surfaces
8
dental implants
8
cells
6
titanium
5
effects ionizing
4

Similar Publications

Comprehensive three-dimensional microCT and signaling analysis reveal the teratogenic effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on craniofacial bone development in mice.

Ecotoxicol Environ Saf

January 2025

Department of Stomatology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, No. 242, Guangji Road, Suzhou, Jiangsu Province 215000, China. Electronic address:

Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in utero can result in osteogenic defect during palatogenesis, but the effects on other craniofacial bones and underlying mechanisms remain to be characterized. By treating pregnant mice with TCDD (40 μg/kg) at the vital craniofacial patterning stages (embryonic day 8.5, 10.

View Article and Find Full Text PDF

Tissues form during development through mechanical compaction of their extracellular matrix (ECM) and shape morphing, processes that result in complex-shaped structures that contribute to tissue function. While observed in vivo, control over these processes in vitro to understand both tissue development and guide tissue formation has remained challenging. Here, we use combinations of mesenchymal stromal cell spheroids and hydrogel microparticles (microgels) with varied hydrolytic stability to fabricate programmable and dynamic granular composites that control compaction and tissue formation over time.

View Article and Find Full Text PDF

Disruption of developmental processes affecting the fetal lung leads to pulmonary hypoplasia. Pulmonary hypoplasia results from several conditions including congenital diaphragmatic hernia (CDH) and oligohydramnios. Both entities have high morbidity and mortality, and no effective therapy that fully restores normal lung development.

View Article and Find Full Text PDF

Postmenopausal osteoporosis (PMOP) is a chronic systemic bone metabolism disorder. Promotion in the patterns of human bone marrow mesenchymal stem cells (hBMSCs) differentiation towards osteoblasts contributes to alleviating osteoporosis. Aucubin, a natural compound isolated from the well-known herbal medicine Eucommia, was previously shown to possess various pharmacological effects.

View Article and Find Full Text PDF

An Acellular Platform to Drive Urinary Bladder Tissue Regeneration.

Adv Ther (Weinh)

January 2025

Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Center for Regenerative Nanomedicine, Northwestern University, Chicago, IL 60611, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA.

Impaired bladder compliance secondary to congenital or acquired bladder dysfunction can lead to irreversible kidney damage. This is managed with surgical augmentation utilizing intestinal tissue, which can cause stone formation, infections, and malignant transformation. Co-seeded bone marrow mesenchymal stem cell (MSC)/CD34+ hematopoietic stem cell (HSPC) scaffolds (PRS) have been successful in regenerating bladder tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!