Background And Aims: Photoperiod contains information about the progress of seasons. Plants use the changing photoperiod as a cue for the correct timing of important life history events, including flowering. Here the effect of photoperiod on flowering in four Arabidopsis lyrata populations originating from different latitudes was studied, as well as expression levels of candidate genes for governing the between-population differences.
Methods: Flowering of plants from four A. lyrata populations was studied in three different photoperiods after vernalization. Flowering development was separated into three steps: flower primordia formation, inflorescence shoot elongation and opening of the first flower. Circadian expression rhythms of the A. lyrata homologues of GIGANTEA (GI), FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1), CONSTANS (CO) and FLOWERING LOCUS T (FT) were studied in three of the populations in the intermediate (14 h) photoperiod treatment.
Key Results: Most plants in all populations formed visible flower primordia during vernalization. Further inflorescence development after vernalization was strongly inhibited by short days in the northern European population (latitude 61°N), only slightly in the central European population (49°N) and not at all in the North American populations (36°N and 42°N). In the 14 h daylength, where all plants from the three southernmost populations but only 60 % of the northernmost population flowered, the circadian expression rhythm of the A. lyrata FT was only detected in the southern populations, suggesting differentiation in the critical daylength for activation of the long-day pathway. However, circadian expression rhythms of A. lyrata GI, FKF1 and CO were similar between populations.
Conclusions: The results indicate that in A. lyrata, transition to flowering can occur through pathways independent of long days, but elongation of inflorescences is photoperiodically regulated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6676387 | PMC |
http://dx.doi.org/10.1093/aob/mcz035 | DOI Listing |
J Exp Bot
December 2024
Department of Agricultural and Forest Sciences and Engineering, University of Lleida-AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain.
The photoperiod insensitive allele of Photoperiod-H1 (ppd-H1) increases spike fertility in barley, both indirectly by lengthening flowering time and directly when flowering time is accelerated under extra-long photoperiods. To determine if the effect of PPD-H1 on spike fertility is related to the initiation or the mortality of spikelets/florets, we performed detailed analysis of the dynamics of floret development along the barley spikes. Four near-isogenic lines (NILs) combining ppd-H1 and Ppd-H1 alleles with two PHYTOCHROME C (PhyC-l and PhyC-e) backgrounds were compared under 12- and 24-hour photoperiods.
View Article and Find Full Text PDFNew Phytol
December 2024
Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil.
Dev Cell
November 2024
College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:
How do growth hormones interact to specify female-germline cell types in flowering plants and control production of the first female-germline cell? Here, we find that gibberellin (GA) biosynthesis and signaling are restricted in ovule primordia, with overexpression of receptors and biosynthetic enzymes resulting in multiple and enlarged megaspore mother cells (MMCs) in Arabidopsis. GA signaling machinery interacts with and promotes the degradation of cytokinin (CK) type-B Arabidopsis response regulators (ARR1/10/12), which also directly interact with DELLA proteins. CK biosynthesis and signaling components are expressed in both MMCs and sporophytic cells, with signaling negatively controlled by GA in ovule primordia, and perturbations leading to the induction of multiple, enlarged MMC-like cells.
View Article and Find Full Text PDFNew Phytol
January 2025
Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan.
The sexual reproductive organs of bryophytes - in which gametes necessary for fertilization are produced, namely, male antheridia and female archegonia - are formed from vegetative haploid gametophytes. In dioicous bryophytes such as Marchantia polymorpha, the genes within the sex-determining regions in distinct sexual strains have been identified. However, in monoicous bryophytes such as Physcomitrium patens, how the two sex fates are specified on the same gametophyte remained unknown.
View Article and Find Full Text PDFPlant Cell
October 2024
National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China.
During flower development, different floral organs are formed to ensure fertilization and fruit set. Although the genetic networks underlying flower development are increasingly well understood, less is known about the mechanistic basis in different species. Here, we identified a mutant of woodland strawberry (Fragaria vesca), bare receptacle (bre), which produces flowers with greatly reduced carpels and other floral organs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!