AI Article Synopsis

  • Nonylphenols (NPs) are chemicals used in industry that disrupt endocrine functions, prompting this study on their effects on male mice.
  • Mice were divided into control and NP-exposed groups, with findings showing that NP exposure led to lower body weights and altered organ weights (higher testes weight but reduced epididymis, prostate, and seminal vesicle weights).
  • Histological analysis revealed negative changes in reproductive structures, including decreased seminiferous tubule sizes and fewer mature sperm, indicating that even low doses of NP can cause harmful reproductive effects that might relate to human health concerns.

Article Abstract

Nonylphenols (NPs) are widely used industrial materials, and are considered as potent endocrine disrupting chemical. Present study was undertaken to clarify the effect of subchronic low-dose NP exposure to F1 generation male mice. Mice were divided into 2 groups; (1) CON, control animals and (2) NP-50 (50 μg/L), animals were treated with NP via drinking water. NP exposures were continuously conducted from parental pre-mating period until the postnatal day (PND) 55 of F1 offsprings. Mice were sacrificed on PND 55 and the tissue weights were measured. The initial body weights (at PND 21) and terminal body weights (PND 55) of the NP-50 animals were significantly lower than those of control animals (0.05). NP exposure induced a significant increase in the absolute weight of the testes (0.05). Conversely, the NP exposure caused significant decrease in the absolute weights of the epididymis (0.01), prostate (0.05) and seminal vesicle (0.05). Histopathological studies revealed that NP-treated animals exerted decreased seminiferous tubule diameters, reduced luminal area, and lower number of germ cells. Also some sloughing morphologies in the tubules were observed. In the caudal epididymis, fewer mature sperms and swollen epithelial cells were found in the NP-treated group. Our results confirmed that the subchronic low-dose NP exposure altered some male parameters and induced histopathological abnormalities in testis and epididymis of F1 mice. Since the NP dose used in this study is close to the average human daily NP exposure, our results could provide practically meaningful understanding of adverse effect of EDC in human.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6635614PMC
http://dx.doi.org/10.12717/DR.2019.23.2.093DOI Listing

Publication Analysis

Top Keywords

subchronic low-dose
12
low-dose exposure
12
male mice
8
control animals
8
body weights
8
weights pnd
8
exposure
6
mice
5
animals
5
adverse nonylphenol
4

Similar Publications

Subchronic Exposure to Low-Dose Chlorfenapyr and Emamectin Benzoate Disrupts Kidney Metabolism in Rats.

Toxics

January 2025

State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

Residues of the pesticides chlorfenapyr (CFP) and emamectin benzoate (EMB) often coexist in the environment and can be accumulated in the body. To understand the impact of these two chemicals on health, we investigated their effect on the kidneys. In this study, rats were treated with CFP and/or EMB at low/medium/high doses of 1/3/9 mg/kg/day and 0.

View Article and Find Full Text PDF

Involvement of gut microbiota in chlorpyrifos-induced subchronic toxicity in mice.

Arch Toxicol

December 2024

Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China.

Chlorpyrifos (CPF) is one of the most widely used organophosphorus pesticides all over the world. Unfortunately, long-term exposure to CPF may cause considerable toxicity to organisms. Some evidence suggests that the intestinal microbial community may be involved in regulating the toxicity of CPF.

View Article and Find Full Text PDF

Background And Purpose: The limited effectiveness of current pharmacological treatments for alcohol use disorder (AUD) highlights the need for novel therapies. These may involve the glucagon-like peptide-1 receptor or the amylin receptor, as treatment with agonists targeting either of these receptors lowers alcohol intake. The complexity of the mechanisms underlying AUD indicates that combining agents could enhance treatment efficacy.

View Article and Find Full Text PDF

The rewarding effects of drugs of abuse are associated with the dopaminergic system in the limbic circuitry. Nicotine exposure during adolescence is linked to increased use of drugs of abuse with nicotine and methamphetamine (METH) commonly used together. Nicotine acts on neuronal nicotinic acetylcholine receptor (nAChR) systems, critical for reward processing and drug reinforcement, while METH leads to a higher dopamine (DA) efflux in brain reward regions.

View Article and Find Full Text PDF

Background:  Glutamatergic N-methyl-D-aspartate (NMDA) receptors play vital roles in memory formation. Changes in the activity of these receptors influence memory processes. Ketamine is a noncompetitive NMDA receptor antagonist drug with promising mood-altering and pain-reducing effects in low doses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!