Extracting as much information as possible about an object when probing with a limited number of photons is an important goal with applications from biology and security to metrology. Imaging with a few photons is a challenging task as the detector noise and stray light are then predominant, which precludes the use of conventional imaging methods. Quantum correlations between photon pairs has been exploited in a so called 'heralded imaging scheme' to eliminate this problem. However these implementations have so-far been limited to intensity imaging and the crucial phase information is lost in these methods. In this work, we propose a novel quantum-correlation enabled Fourier Ptychography technique, to capture high-resolution amplitude and phase images with a few photons. This is enabled by the heralding of single photons combined with Fourier ptychographic reconstruction. We provide experimental validation and discuss the advantages of our technique that include the possibility of reaching a higher signal to noise ratio and non-scanning Fourier Ptychographic acquisition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6639395 | PMC |
http://dx.doi.org/10.1038/s41598-019-46273-x | DOI Listing |
Nanoscale
January 2025
Transport at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
Magic-angle twisted bilayer graphene (TBLG) has emerged as a versatile platform to explore correlated electron phases driven primarily by low-energy flat bands in moiré superlattices. While techniques for controlling the twist angle between graphene layers have spurred rapid experimental progress, understanding the effects of doping inhomogeneity on electronic transport in correlated electron systems remains challenging. In this work, we investigate the interplay of confinement and doping inhomogeneity on the electrical transport properties of TBLG by leveraging device dimensions and twist angles.
View Article and Find Full Text PDFNPJ Quantum Mater
January 2025
NIST Center for Neutron Research, Gaithersburg, MD 20899 USA.
The detailed anisotropic dispersion of the low-temperature, low-energy magnetic excitations of the candidate spin-triplet superconductor UTe is revealed using inelastic neutron scattering. The magnetic excitations emerge from the Brillouin zone boundary at the high symmetry and points and disperse along the crystallographic -axis. In applied magnetic fields to at least = 11 T along the , the magnetism is found to be field-independent in the ( 0) plane.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany.
We explore the role of molecular vibrations in the chirality-induced spin selectivity (CISS) effect in the context of charge transport through a molecular nanojunction. We employ a mixed quantum-classical approach that combines Ehrenfest dynamics for molecular vibrations with the hierarchical equations of motion method for the electronic degrees of freedom. This approach treats the molecular vibrations in a nonequilibrium manner, which is crucial for the dynamics of molecular nanojunctions.
View Article and Find Full Text PDFIUCrJ
January 2025
Dynamic Molecular Materials Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
Understanding dynamic processes in molecular crystals is becoming crucial for the development of next-generation smart crystalline materials. In this context, Zwolenik & Makal [(2025). IUCrJ, 12, https://doi.
View Article and Find Full Text PDFChem Sci
December 2024
Department of Chemistry, The University of Tokyo Hongo 7-3-1, Bunkyo-ku Tokyo 113-0033 Japan
A method for correlating reaction conditions with device performance was developed by combining Design-of-Experiments and machine-learning strategies in multistep device fabrication processes. This method allowed the "from-flask-to-device" optimisation of a macrocyclisation reaction yielding a mixture of methylated []cyclo--phenylenes, and a crude raw material was directly applied to the fabrication of Ir-doped organic light-emitting devices spin-coating. The method succeeded in eliminating energy-consuming and waste-producing separation and purification steps during device fabrication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!