Extracting as much information as possible about an object when probing with a limited number of photons is an important goal with applications from biology and security to metrology. Imaging with a few photons is a challenging task as the detector noise and stray light are then predominant, which precludes the use of conventional imaging methods. Quantum correlations between photon pairs has been exploited in a so called 'heralded imaging scheme' to eliminate this problem. However these implementations have so-far been limited to intensity imaging and the crucial phase information is lost in these methods. In this work, we propose a novel quantum-correlation enabled Fourier Ptychography technique, to capture high-resolution amplitude and phase images with a few photons. This is enabled by the heralding of single photons combined with Fourier ptychographic reconstruction. We provide experimental validation and discuss the advantages of our technique that include the possibility of reaching a higher signal to noise ratio and non-scanning Fourier Ptychographic acquisition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6639395PMC
http://dx.doi.org/10.1038/s41598-019-46273-xDOI Listing

Publication Analysis

Top Keywords

quantum correlations
8
fourier ptychography
8
fourier ptychographic
8
imaging
5
phase amplitude
4
amplitude imaging
4
imaging quantum
4
fourier
4
correlations fourier
4
ptychography extracting
4

Similar Publications

Electronic confinement induced quantum dot behavior in magic-angle twisted bilayer graphene.

Nanoscale

January 2025

Transport at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.

Magic-angle twisted bilayer graphene (TBLG) has emerged as a versatile platform to explore correlated electron phases driven primarily by low-energy flat bands in moiré superlattices. While techniques for controlling the twist angle between graphene layers have spurred rapid experimental progress, understanding the effects of doping inhomogeneity on electronic transport in correlated electron systems remains challenging. In this work, we investigate the interplay of confinement and doping inhomogeneity on the electrical transport properties of TBLG by leveraging device dimensions and twist angles.

View Article and Find Full Text PDF

The detailed anisotropic dispersion of the low-temperature, low-energy magnetic excitations of the candidate spin-triplet superconductor UTe is revealed using inelastic neutron scattering. The magnetic excitations emerge from the Brillouin zone boundary at the high symmetry and points and disperse along the crystallographic -axis. In applied magnetic fields to at least = 11 T along the , the magnetism is found to be field-independent in the ( 0) plane.

View Article and Find Full Text PDF

Influence of nonequilibrium vibrational dynamics on spin selectivity in chiral molecular junctions.

J Chem Phys

January 2025

Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany.

We explore the role of molecular vibrations in the chirality-induced spin selectivity (CISS) effect in the context of charge transport through a molecular nanojunction. We employ a mixed quantum-classical approach that combines Ehrenfest dynamics for molecular vibrations with the hierarchical equations of motion method for the electronic degrees of freedom. This approach treats the molecular vibrations in a nonequilibrium manner, which is crucial for the dynamics of molecular nanojunctions.

View Article and Find Full Text PDF

Connecting lattice and molecular vibrations to organic crystal properties.

IUCrJ

January 2025

Dynamic Molecular Materials Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.

Understanding dynamic processes in molecular crystals is becoming crucial for the development of next-generation smart crystalline materials. In this context, Zwolenik & Makal [(2025). IUCrJ, 12, https://doi.

View Article and Find Full Text PDF

A method for correlating reaction conditions with device performance was developed by combining Design-of-Experiments and machine-learning strategies in multistep device fabrication processes. This method allowed the "from-flask-to-device" optimisation of a macrocyclisation reaction yielding a mixture of methylated []cyclo--phenylenes, and a crude raw material was directly applied to the fabrication of Ir-doped organic light-emitting devices spin-coating. The method succeeded in eliminating energy-consuming and waste-producing separation and purification steps during device fabrication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!