The concepts of Weyl fermions and topological semimetals emerging in three-dimensional momentum space are extensively explored owing to the vast variety of exotic properties that they give rise to. On the other hand, very little is known about semimetallic states emerging in two-dimensional magnetic materials, which present the foundation for both present and future information technology. Here, we demonstrate that including the magnetization direction into the topological analysis allows for a natural classification of topological semimetallic states that manifest in two-dimensional ferromagnets as a result of the interplay between spin-orbit and exchange interactions. We explore the emergence and stability of such mixed topological semimetals in realistic materials, and point out the perspectives of mixed topological states for current-induced orbital magnetism and current-induced domain wall motion. Our findings pave the way to understanding, engineering and utilizing topological semimetallic states in two-dimensional spin-orbit ferromagnets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6639329PMC
http://dx.doi.org/10.1038/s41467-019-10930-6DOI Listing

Publication Analysis

Top Keywords

mixed topological
12
topological semimetals
12
semimetallic states
12
two-dimensional ferromagnets
8
topological semimetallic
8
topological
6
semimetals driven
4
driven orbital
4
orbital complexity
4
two-dimensional
4

Similar Publications

Machine learning reveals the dynamic importance of accessory sequences for outbreak clustering.

mBio

January 2025

Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.

Unlabelled: Bacterial typing at whole-genome scales is now feasible owing to decreasing costs in high-throughput sequencing and the recent advances in computation. The unprecedented resolution of whole-genome typing is achieved by genotyping the variable segments of bacterial genomes that can fluctuate significantly in gene content. However, due to the transient and hypervariable nature of many accessory elements, the value of the added resolution in outbreak investigations remains disputed.

View Article and Find Full Text PDF

Genetic variation in IL-4 activated tissue resident macrophages determines strain-specific synergistic responses to LPS epigenetically.

Nat Commun

January 2025

Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.

How macrophages in the tissue environment integrate multiple stimuli depends on the genetic background of the host, but this is still poorly understood. We investigate IL-4 activation of male C57BL/6 and BALB/c strain specific in vivo tissue-resident macrophages (TRMs) from the peritoneal cavity. C57BL/6 TRMs are more transcriptionally responsive to IL-4 stimulation, with induced genes associated with more super enhancers, induced enhancers, and topologically associating domains (TAD) boundaries.

View Article and Find Full Text PDF

Confinement Induces Morphological and Topological Transitions in Multivesicles.

ACS Nano

January 2025

Instituto de Histología y Embriología de Mendoza (IHEM)─Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina.

The study of self-assembly in confined spaces has gained significant attention among amphiphilic superstructures and colloidal design. The additional complexity introduced by interactions between contents and their containers, along with the effects of shape and lipid mixing, makes multivesicular bodies an interesting subject of study. Despite its promising applications in biomedicine, such as drug delivery and biomimetic materials, much remains unexplored.

View Article and Find Full Text PDF

A Stable Zn(II) Metal-Organic Framework as Turn-On and Blue-Shift Fluorescence Sensor for Amino Acids and Dipicolinic Acid in Living Cells or Using Aerosol Jet Printing.

Inorg Chem

January 2025

School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.

Amino acids and dipicolinic acid (DPA) are important biomarkers for identifying human health. Establishing rapid, accurate, sensitive, and simple assays is essential for disease prevention and early diagnosis. In this work, a novel Zn(II) metal-organic framework (MOF) with the formula {[Zn(μ-OH)(BTDI)(dpp)]·dpp·4HO·2DMF} (, where denotes Jiangxi University of Science and Technology, HBTDI = 5,5'-(benzo[][1,2,5]thiadiazole-4,7-diyl)diisophthalic acid; dpp = 1,3-di(4-pyridyl)propane) was successfully synthesized via a mixed-ligands strategy.

View Article and Find Full Text PDF

Understanding topological defects-controlled structural degradation of layered oxides-a key cathode material for high-performance lithium-ion batteries-plays a critical role in developing next-generation cathode materials. Here, by constructing a nanobattery in an electron microscope enabling atomic-scale monitoring of electrochemcial reactions, we captured the electrochemically driven atomistic dynamics and evolution of dislocations-a most important topological defect in material. We deciphered how dislocations nucleate, move, and annihilate within layered cathodes at the atomic scale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!