We previously reported that 1H-pyrazolo-[3,4-b]pyridine-4-carboxylic acid derivative 6 is an agonist of human peroxisome proliferator-activated receptor alpha (hPPARα). Here, we prepared a series of 1H-pyrazolo-[3,4-b]pyridine-4-carboxylic acid derivatives in order to examine the structure-activity relationships (SAR). SAR studies clearly indicated that the steric bulkiness of the substituent on 1H-pyrazolo-[3,4-b]pyridine ring, the position of the distal hydrophobic tail part, and the distance between the distal hydrophobic tail part and the acidic head part are critical for hPPARα agonistic activity. These SAR results are somewhat different from those reported for fibrate-class hPPARα agonists. A representative compound (10f) was as effective as fenofibrate in reducing the elevated plasma triglyceride levels in a high-fructose-fed rat model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2019.06.062 | DOI Listing |
Sci Rep
May 2020
Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Small-molecule agonism of peroxisome proliferator-activated receptor α (PPARα), a ligand-activated transcriptional factor involved in regulating fatty acid metabolism, is an important approach for treating dyslipidemia. Here, we determined the structures of the ligand-binding domain (LBD) of PPARα in complex with 1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid derivatives, which were recently identified as PPARα-selective activators with markedly different structures from those of the well-known PPARα agonists fibrates. The crystal structures of the complexes showed that they form a canonical hydrogen-bond network involving helix 12 in the LBD, which is thought to be essential for PPARα activation, as also observed for fibrates.
View Article and Find Full Text PDFBioorg Med Chem Lett
August 2019
Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
We previously reported that 1H-pyrazolo-[3,4-b]pyridine-4-carboxylic acid derivative 6 is an agonist of human peroxisome proliferator-activated receptor alpha (hPPARα). Here, we prepared a series of 1H-pyrazolo-[3,4-b]pyridine-4-carboxylic acid derivatives in order to examine the structure-activity relationships (SAR). SAR studies clearly indicated that the steric bulkiness of the substituent on 1H-pyrazolo-[3,4-b]pyridine ring, the position of the distal hydrophobic tail part, and the distance between the distal hydrophobic tail part and the acidic head part are critical for hPPARα agonistic activity.
View Article and Find Full Text PDFJ Labelled Comp Radiopharm
May 2018
Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA.
1-(4-Fluorophenyl)-1H-pyrazolo[3,4-c]pyridine-4-carboxylic acid (2-methanesulfonyl-pyridin-4-ylmethyl)-amide (1) and its analogs (2) and (3) are potent CCR1 antagonists intended for the treatment of rheumatoid arthritis. The detailed syntheses of these 3 compounds labeled with carbon-13 as well as the preparation of (1) and (2) labeled with carbon-14, and (1) labeled with tritium, are described.
View Article and Find Full Text PDFJ Biol Chem
June 2018
From the Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871,
Peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor that belongs to the superfamily of nuclear hormone receptors. PPARα is mainly expressed in the liver, where it activates fatty acid oxidation and lipoprotein metabolism and improves plasma lipid profiles. Therefore, PPARα activators are often used to treat patients with dyslipidemia.
View Article and Find Full Text PDFJ Med Chem
March 2013
Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455, USA.
Siderophores are small-molecule iron chelators produced by bacteria and other microorganisms for survival under iron limiting conditions such as found in a mammalian host. Siderophore biosynthesis is essential for the virulence of many important Gram-negative pathogens including Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli. We performed high-throughput screening against BasE, which is involved in siderophore biosynthesis in A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!