We previously reported that 1H-pyrazolo-[3,4-b]pyridine-4-carboxylic acid derivative 6 is an agonist of human peroxisome proliferator-activated receptor alpha (hPPARα). Here, we prepared a series of 1H-pyrazolo-[3,4-b]pyridine-4-carboxylic acid derivatives in order to examine the structure-activity relationships (SAR). SAR studies clearly indicated that the steric bulkiness of the substituent on 1H-pyrazolo-[3,4-b]pyridine ring, the position of the distal hydrophobic tail part, and the distance between the distal hydrophobic tail part and the acidic head part are critical for hPPARα agonistic activity. These SAR results are somewhat different from those reported for fibrate-class hPPARα agonists. A representative compound (10f) was as effective as fenofibrate in reducing the elevated plasma triglyceride levels in a high-fructose-fed rat model.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2019.06.062DOI Listing

Publication Analysis

Top Keywords

1h-pyrazolo-[34-b]pyridine-4-carboxylic acid
12
acid derivatives
8
human peroxisome
8
peroxisome proliferator-activated
8
proliferator-activated receptor
8
receptor alpha
8
distal hydrophobic
8
hydrophobic tail
8
structural development
4
development 1h-pyrazolo-[34-b]pyridine-4-carboxylic
4

Similar Publications

Structural Basis for PPARα Activation by 1H-pyrazolo-[3,4-b]pyridine Derivatives.

Sci Rep

May 2020

Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Small-molecule agonism of peroxisome proliferator-activated receptor α (PPARα), a ligand-activated transcriptional factor involved in regulating fatty acid metabolism, is an important approach for treating dyslipidemia. Here, we determined the structures of the ligand-binding domain (LBD) of PPARα in complex with 1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid derivatives, which were recently identified as PPARα-selective activators with markedly different structures from those of the well-known PPARα agonists fibrates. The crystal structures of the complexes showed that they form a canonical hydrogen-bond network involving helix 12 in the LBD, which is thought to be essential for PPARα activation, as also observed for fibrates.

View Article and Find Full Text PDF

We previously reported that 1H-pyrazolo-[3,4-b]pyridine-4-carboxylic acid derivative 6 is an agonist of human peroxisome proliferator-activated receptor alpha (hPPARα). Here, we prepared a series of 1H-pyrazolo-[3,4-b]pyridine-4-carboxylic acid derivatives in order to examine the structure-activity relationships (SAR). SAR studies clearly indicated that the steric bulkiness of the substituent on 1H-pyrazolo-[3,4-b]pyridine ring, the position of the distal hydrophobic tail part, and the distance between the distal hydrophobic tail part and the acidic head part are critical for hPPARα agonistic activity.

View Article and Find Full Text PDF

Potent and selective CC chemokine receptor 1 antagonists labeled with carbon-13, carbon-14, and tritium.

J Labelled Comp Radiopharm

May 2018

Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA.

1-(4-Fluorophenyl)-1H-pyrazolo[3,4-c]pyridine-4-carboxylic acid (2-methanesulfonyl-pyridin-4-ylmethyl)-amide (1) and its analogs (2) and (3) are potent CCR1 antagonists intended for the treatment of rheumatoid arthritis. The detailed syntheses of these 3 compounds labeled with carbon-13 as well as the preparation of (1) and (2) labeled with carbon-14, and (1) labeled with tritium, are described.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor that belongs to the superfamily of nuclear hormone receptors. PPARα is mainly expressed in the liver, where it activates fatty acid oxidation and lipoprotein metabolism and improves plasma lipid profiles. Therefore, PPARα activators are often used to treat patients with dyslipidemia.

View Article and Find Full Text PDF

Siderophores are small-molecule iron chelators produced by bacteria and other microorganisms for survival under iron limiting conditions such as found in a mammalian host. Siderophore biosynthesis is essential for the virulence of many important Gram-negative pathogens including Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli. We performed high-throughput screening against BasE, which is involved in siderophore biosynthesis in A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!