A carbon nanotube sponge as an adsorbent for vapor preconcentration of aromatic volatile organic compounds.

J Chromatogr A

Department of Chemistry and Nanoscience & Technology Institute, Wonkwang University, 460 Iksandaero, Jeonbuk, 54538, Republic of Korea. Electronic address:

Published: November 2019

A carbon nanotube (CNT) sponge was synthesized and examined as an adsorptive material for a thermally desorbed preconcentrator for volatile organic compounds (VOCs). The porous sponge-like material, retaining the intrinsic properties of individual multiwalled (MW) CNTs, was fabricated using spray pyrolysis chemical vapor deposition (CVD). The square pillar form of the CNT sponge was enclosed in a 1/4″ glass tube with fittings for flow-through sampling. Flow of a direct current through the CNT sponge allowed rapid thermal heating to a surface temperature of 264.7 ℃ at a rate of 481.5 ℃/s and a narrow desorption bandwidth of 0.74 s. The preconcentration concept was validated using gas chromatographic analysis of an aromatic VOC mixture, including benzene, toluene, ethylbenzene, and o-xylene (BTEX) vapors at concentrations of 100 parts per billion (ppb). With an adsorption volume of only 100 mL, the enrichment factor of each analyte was 300 (B), 240 (T), 210 (E), and 200 (X), enabling sensitive measurements with limits of detection at the parts per trillion level. Sequential desorption experiments confirmed that a single desorption process evaporates all the analytes inside the preconcentrator with >96% efficiency. There was no humidity effect and no sign of performance degradation after continuous operation for 45 repeated cycles. These results demonstrate that CNT sponges are a suitable material for the enrichment and sensitive determination of VOCs at trace levels. Thus, CNT sponge preconcentrators are advantageous in a variety of applications that permit fast and accurate real-time measurements, including ambient air and workplace air monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2019.460363DOI Listing

Publication Analysis

Top Keywords

cnt sponge
16
carbon nanotube
8
volatile organic
8
organic compounds
8
sponge
5
cnt
5
nanotube sponge
4
sponge adsorbent
4
adsorbent vapor
4
vapor preconcentration
4

Similar Publications

Article Synopsis
  • Two types of porous supporting materials were developed using chemical vapor deposition: CNT-decorated diatomite (CNT/DE) and CNT sponges (CNS) for creating form-stable phase-change material (PCM) composites with polyethylene glycol (PEG).
  • The CNT/DE matrix featured well-entangled nanotubes and enabled high PEG loading (75 wt%) without leakage, while the CNS formed a 3D porous structure that also supported high PEG incorporation.
  • Both PCM composites exhibited excellent thermal reliability through numerous melting-solidification cycles and demonstrated reduced cooling power requirements in building applications, indicating their potential for effective thermal energy storage in building materials.
View Article and Find Full Text PDF

In this work, the simple fabrication of a new superhydrophobic magnetic sponge based on CNTs, NiFeO nanoparticles, and PDMS was investigated. CNTs were synthesized by chemical vapor deposition (CVD) on a nickel ferrite catalyst supported on aluminum oxide (NiFeO/AlO). The synthesis of nickel ferrite (NiFe) was accomplished using the sol-gel method, yielding magnetic nanoparticles (43 Amkg, coercivity of 93 Oe, 21-29 nm).

View Article and Find Full Text PDF

High-Performance Silicone Sponge Evaporators with Low Thermal Conductivity for Long-Term Solar Interfacial Evaporation and Freshwater Harvesting.

Langmuir

December 2024

Research Center of Resource Chemistry and Energy Materials, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P. R. China.

Solar interfacial evaporation (SIE) has emerged as a highly promising approach for sustainable freshwater harvesting. However, maintaining a stable evaporation rate and achieving a high freshwater yield in high-salinity brines remain a significant challenge. In this study, we present the development of silicone sponge-based evaporators with a "free-salt" structure, designed to enhance the efficiency of SIE and freshwater collection.

View Article and Find Full Text PDF

Morse code recognition plays a very important role in the application of human-machine interaction. In this paper, based on the carbon nanotube (CNT) and polyurethane sponge (PUS) composite material, a flexible tactile CNT/PUS sensor with great piezoresistive characteristic is developed for detecting Morse code precisely. Thirty-six types of Morse code, including 26 letters (A-Z) and 10 numbers (0-9), are applied to the sensor.

View Article and Find Full Text PDF

Recent advancements in marine technology have highlighted the urgent need for enhanced underwater acoustic applications, from sonar detection to communication and noise cancellation, driving the pursuit of innovative transducer technologies. In this paper, a new underwater thermoacoustic (TA) transducer made from carbon nanotube (CNT) sponge is designed to achieve wide bandwidth, high energy conversion efficiency, simple structure, good transient response, and stable sound response, utilizing the TA effect through electro-thermal modulation. The transducer has potential application in underwater acoustic communication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!