A carbon nanotube (CNT) sponge was synthesized and examined as an adsorptive material for a thermally desorbed preconcentrator for volatile organic compounds (VOCs). The porous sponge-like material, retaining the intrinsic properties of individual multiwalled (MW) CNTs, was fabricated using spray pyrolysis chemical vapor deposition (CVD). The square pillar form of the CNT sponge was enclosed in a 1/4″ glass tube with fittings for flow-through sampling. Flow of a direct current through the CNT sponge allowed rapid thermal heating to a surface temperature of 264.7 ℃ at a rate of 481.5 ℃/s and a narrow desorption bandwidth of 0.74 s. The preconcentration concept was validated using gas chromatographic analysis of an aromatic VOC mixture, including benzene, toluene, ethylbenzene, and o-xylene (BTEX) vapors at concentrations of 100 parts per billion (ppb). With an adsorption volume of only 100 mL, the enrichment factor of each analyte was 300 (B), 240 (T), 210 (E), and 200 (X), enabling sensitive measurements with limits of detection at the parts per trillion level. Sequential desorption experiments confirmed that a single desorption process evaporates all the analytes inside the preconcentrator with >96% efficiency. There was no humidity effect and no sign of performance degradation after continuous operation for 45 repeated cycles. These results demonstrate that CNT sponges are a suitable material for the enrichment and sensitive determination of VOCs at trace levels. Thus, CNT sponge preconcentrators are advantageous in a variety of applications that permit fast and accurate real-time measurements, including ambient air and workplace air monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2019.460363 | DOI Listing |
Materials (Basel)
November 2024
Dipartimento di Fisica, Università degli Studi di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Roma, Italy.
Nanomaterials (Basel)
December 2024
Department of Chemistry, Faculty of Natural Sciences, Eurasian National University Named after L.N. Gumilyov, Astana 010000, Kazakhstan.
In this work, the simple fabrication of a new superhydrophobic magnetic sponge based on CNTs, NiFeO nanoparticles, and PDMS was investigated. CNTs were synthesized by chemical vapor deposition (CVD) on a nickel ferrite catalyst supported on aluminum oxide (NiFeO/AlO). The synthesis of nickel ferrite (NiFe) was accomplished using the sol-gel method, yielding magnetic nanoparticles (43 Amkg, coercivity of 93 Oe, 21-29 nm).
View Article and Find Full Text PDFLangmuir
December 2024
Research Center of Resource Chemistry and Energy Materials, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P. R. China.
Solar interfacial evaporation (SIE) has emerged as a highly promising approach for sustainable freshwater harvesting. However, maintaining a stable evaporation rate and achieving a high freshwater yield in high-salinity brines remain a significant challenge. In this study, we present the development of silicone sponge-based evaporators with a "free-salt" structure, designed to enhance the efficiency of SIE and freshwater collection.
View Article and Find Full Text PDFMicromachines (Basel)
June 2024
School of Electronic and Information Engineering, Anhui Jianzhu University, Hefei 230601, China.
Morse code recognition plays a very important role in the application of human-machine interaction. In this paper, based on the carbon nanotube (CNT) and polyurethane sponge (PUS) composite material, a flexible tactile CNT/PUS sensor with great piezoresistive characteristic is developed for detecting Morse code precisely. Thirty-six types of Morse code, including 26 letters (A-Z) and 10 numbers (0-9), are applied to the sensor.
View Article and Find Full Text PDFNanomaterials (Basel)
May 2024
School of Aeronautics and Astronautics, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
Recent advancements in marine technology have highlighted the urgent need for enhanced underwater acoustic applications, from sonar detection to communication and noise cancellation, driving the pursuit of innovative transducer technologies. In this paper, a new underwater thermoacoustic (TA) transducer made from carbon nanotube (CNT) sponge is designed to achieve wide bandwidth, high energy conversion efficiency, simple structure, good transient response, and stable sound response, utilizing the TA effect through electro-thermal modulation. The transducer has potential application in underwater acoustic communication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!