Highly conductive multi-walled carbon nanotubes (MWCNTs) and flexible cellulose nanofibers (CNF) membranes with semi-interpenetrating networks structure were fabricated using the typical paper-making method, which was simple and cost-effective. The Scanning electron microscope (SEM), Fourier-transform infrared (FT-IR), and thermal gravimetric analysis (TGA) were used to estimate the morphology, chemical structure, and thermal stability of the membranes. The mechanical, optical, and electrical properties of the membranes were characterized with a uniaxial tensile testing machine, ultraviolet visible spectroscope, and digital multimeter, respectively. The results indicated that the membranes containing 10 wt% of MWCNTs showed a high conductivity value of 37.6 S/m, and the sheet resistances of the membranes were stable at different bending states. Furthermore, we demonstrated the electrical features of membrane-based capacitive pressure sensors based on CNF/MWCNTs. The proposed method for fabricating CNF/MWCNTs membranes can simplify the production process and have great practical potential in various electronics applications such as touch screens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2019.115013 | DOI Listing |
Support Care Cancer
January 2025
Department of Medical Oncology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, 1066 CX, Amsterdam, the Netherlands.
Purpose: Adolescent and young adult (AYA) malignant brain tumour (BT) survivors are at risk of adverse health outcomes, which may impact their health-related quality of life (HRQoL). This study aimed to investigate the (1) prevalence of physical and psychological adverse health outcomes, (2) the HRQoL, and (3) the association of adverse health outcomes and HRQoL among long-term AYA-BT survivors. Adverse health outcomes and HRQoL were compared to other AYA cancer (AYAC) survivors.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen 361005, China.
Advancements in the development of fast-charging and long-lasting microstructured alloying anodes with high volumetric capacities are essential for enhancing the operational efficiency of sodium-ion batteries (SIBs). These anodes, however, face challenges such as declined cyclability and rate capability, primarily due to mechanical degradation reduced by significant volumetric changes (over 252%) and slow kinetics of sodium-ion storage. Herein, we introduce a novel anode design featuring densely packed bismuth (Bi) embedded within highly conductive carbon microspheres to overcome the aforementioned challenges.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
Coacervation based on liquid-liquid phase separation (LLPS) has been widely used for the preparation of artificial protocells and to mimic the dynamic organization of membrane-free organelles. Most complex synthetic coacervates are formed through electrostatic interactions but cannot withstand high ionic strength conditions (>0.1 M).
View Article and Find Full Text PDFBiomacromolecules
January 2025
Instituto de Química de los Materiales, Ambiente y Energía, CONICET, Universidad de Buenos Aires, Intendente Güiraldes 2160, CABA (Buenos Aires) 1428, Argentina.
The study of the phase behavior of polyelectrolyte complex coacervates has attracted significant attention in recent years due to their potential use as membrane-less organelles, microreactors, and drug delivery platforms. In this work, we investigate the mechanism of protein loading in chain-length asymmetric complex coacervates composed of a polyelectrolyte and an oppositely charged multivalent ion. Unlike the symmetric case (polycation + polyanion), we show that protein loading is highly selective based on the protein's net charge: only proteins with charges opposite to the polyelectrolyte can be loaded.
View Article and Find Full Text PDFDalton Trans
January 2025
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China.
During the oxygen evolution reaction (OER), metal-organic framework (MOF) catalysts undergo structural reorganization, a phenomenon that is still not fully comprehended. Additionally, designing MOFs that undergo structural reconstruction to produce highly active OER catalysts continues to pose significant challenges. Herein, a bimetallic MOF (CoNi-MOF) with carboxylate oxygen and pyridine nitrogen coordination has been synthesized and its reconstruction behavior has been analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!