Cyclodextrin functionalized agarose gel with low gelling temperature for controlled drug delivery systems.

Carbohydr Polym

Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea; Institute for Ubiquitous Information Technology and Applications (UBITA), Center for Biotechnology Research in UBITA (CBRU), Konkuk University, Seoul, 05029, South Korea. Electronic address:

Published: October 2019

Conventional agaroses with high gelling temperature are limited to apply to the field of drug delivery. In this study, β-cyclodextrin (βCD) functionalized agarose (CFA) with low gelling temperature was successfully prepared from ethylenediamine-functionalized agarose using mono-succinyl βCD. The gelling temperature of CFA dramatically decreased to 26.7 °C from 65 °C and the melting temperature declined from 95 °C to 66.1 °C. Upon drug loading, CFA can be used at 30 °C because of its low gelling temperature compared to agarose. CFA gel could be used both for bovine serum albumin as a full release, and for the doxorubicin (DOX) for sustained release, via inclusion complexation of βCD. Furthermore, cytotoxicity tests revealed that CFA was noncytotoxic. DOX in the CFA gel could retain the anti-cancer activity. Newly synthesized CFA with low gelling temperature offer a new means for the development of hydrogel-based delivery systems for a variety of therapeutic drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2019.115011DOI Listing

Publication Analysis

Top Keywords

gelling temperature
24
low gelling
16
functionalized agarose
8
drug delivery
8
delivery systems
8
agarose cfa
8
cfa low
8
cfa gel
8
temperature
7
cfa
7

Similar Publications

The work aims to develop mucoadhesive and thermo-responsive in situ gelling systems, using hydrophobically-modified hydroxypropyl-methyl cellulose (Sangelose, SG) and beta-cyclodextrin (β-CD) derivatives, for preventing viral respiratory infections. Eight SG/CD systems with varying CD concentrations were evaluated for rheological properties, mucoadhesiveness, spreadability and sprayability via nasal devices; cytotoxicity was in vitro investigated on reconstituted nasal epithelia. Additionally, droplet size distribution and spray deposition were assessed for the most promising systems.

View Article and Find Full Text PDF

In this study, we applied a systematic approach to establish an iterative workflow and to drive the chemical design of thermosensitive, in situ forming injectables as a function of the intended target product profile. Self-assembly, mechanical properties, physical state, and thermal transition behavior were assessed via nuclear magnetic resonance, oscillatory rheology, turbidimetry and visual inspection techniques. Thus, poly(N-isopropylacrylamide) (PNIPAM) and poly(2-alkyl-2-oxazoline)s (PAOx)s with LCSTs below body temperature were studied before and after grafting them onto azido-substituted hyaluronic acid (HA) via strain-promoted azide-alkyne cycloaddition (SPAAC).

View Article and Find Full Text PDF

This study aimed to prepare films using Xyloglucan (Xylo) and tea extract (TE) to treat aphthous stomatitis without causing discomfort. Xylo, which gelates by adding polyphenol, was used as a gelation agent, and TE, which contains epigallocatechin-3-gallate (EGCG) with antioxidant properties, was used as an active pharmaceutical agent. Two kinds of films, hydrogel and xerogel films, were prepared by mixing various amounts of Xylo and TE.

View Article and Find Full Text PDF

As consumer awareness grows regarding the environmental and health impacts of animal-based products, plant-based alternatives are gaining popularity in developed countries. Plant-based proteins, like soy protein isolate (SPI), are valued for their sustainability and ability to complement animal proteins. SPI is commonly used in plant-based yogurts due to its high-quality protein, strong gelling capacity, and support for lactic acid bacteria (LAB) growth.

View Article and Find Full Text PDF

Alteration of gel point of poloxamer 338 induced by pharmaceutical actives and excipients.

Eur J Pharm Biopharm

January 2025

BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany. Electronic address:

Poloxamer 338 is used as versatile thermo-responsive gelling agent in topical and sub-cutaneous applications. Due to application specific needs a gel point below body or even below room temperature is required. The influence of inorganic salts and active pharmaceutical ingredients (APIs) on the gel point was investigated using oscillatory rheology to identify the driving forces and predictors for gel point alteration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!