Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background And Objective: To develop a machine learning model to predict urine output (UO) in sepsis patients after fluid resuscitation.
Methods: We identified sepsis patients in the Multiparameter Intelligent Monitoring in Intensive Care-III v1.4 database according to the Sepsis-3 criteria. We focused on two outcomes: whether the UO decreased after fluid administration and whether oliguria (defined as UO less than the threshold of 0.5 mL/kg/h) developed. A gradient tree-based machine learning model implemented with an eXtreme Gradient Boosting algorithm was used to integrate relevant physiological parameters for predicting the aforementioned outcomes. A confusion matrix was computed.
Results: A total of 232,929 events in 19,275 patients were included. Using decreased UO as the outcome measure, the optimal model achieved an area under the curve (AUC) of 0.86; for predicting oliguria, most models achieved an AUC greater than 0.86, and the highest sensitivity was 92.2% when the model was applied to patients with baseline oliguria.
Conclusions: Machine learning could help clinicians evaluate fluid status in sepsis patients after fluid administration, thus preventing fluid overload-related complications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2019.05.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!