Background: Engineered vaccine proteins incorporating both antigen and adjuvant components are constructed with the aim of combining functions to induce effective protective immunity. Bacterial flagellin is a strong candidate for an engineered vaccine scaffold as it is known to provide adjuvant activity through its TLR5 and inflammasome activation. Moreover, polymerized flagellin filaments can elicit a more robust immunoglobulin response than monomeric flagellin, and the multimeric antigen form can also promote T cell-independent antibody responses. Here, we aim to produce and test a covalently stabilized polymerized flagellar filament, providing additional immune efficacy through stabilization of its polymeric filament structure, as well as stabilization for long-term storage.
Results: Computational modeling of monomer packing in flagellin filaments helped identify amino acids with proximity to neighboring flagella protofilaments. Paired cysteine substitutions were made at amino acids predicted to form inter-monomer disulfide cross-links, and these substitutions were capable of forming flagella when transfected into a flagellin-negative strain of Salmonella enterica subspecies Typhimurium. Interestingly, each paired substitution stabilized different helical conformational polymorphisms; the stabilized filaments lost the ability to transition between conformations, reducing bacterial motility. More importantly, the paired substitutions enabled extensive disulfide cross links and intra-filament multimer formation, and in one of the three variants, permitted filament stability in high acidic and temperature conditions where wild-type filaments would normally rapidly depolymerize. In addition, with regard to potential adjuvant activity, all crosslinked flagella filaments were able to induce wild-type levels of epithelial NF-κB in a cell reporter system. Finally, bacterial virulence was unimpaired in epithelial adherence and invasion, and the cysteine substitutions also appeared to increase bacterial resistance to oxidizing and reducing conditions.
Conclusions: We identified amino acid pairs, with cysteine substitutions, were able to form intermolecular disulfide bonds that stabilized the resulting flagellar filaments in detergent, hydrochloric acid, and high temperatures while retaining its immunostimulatory function. Flagellar filaments with disulfide-stabilized protofilaments introduce new possibilities for the application of flagella as a vaccine adjuvant. Specifically, increased stability and heat tolerance permits long-term storage in a range of temperature environments, as well as delivery under a range of clinical conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6637544 | PMC |
http://dx.doi.org/10.1186/s12896-019-0545-3 | DOI Listing |
Int J Mol Sci
December 2024
Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy.
Mitochondrial carriers transport organic acids, amino acids, nucleotides and cofactors across the mitochondrial inner membrane. These transporters consist of a three-fold symmetric bundle of six transmembrane α-helices that encircle a pore with a central substrate binding site, whose alternating access is controlled by a cytoplasmic and a matrix gate (C- and M-gates). The C- and M-gates close by forming two different salt-bridge networks involving the conserved motifs [YF][DE]XX[KR] on the even-numbered and PX[DE]XX[KR] on the odd-numbered transmembrane α-helices, respectively.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand.
The "a" determinant, a highly conformational region within the hepatitis B virus large surface protein (LHBs), is crucial for antibody neutralization and diagnostic assays. Mutations in this area can lead to conformational changes, resulting in vaccination failure, diagnostic evasion, and disease progression. The "a" determinant of LHBs contains a conserved N-linked glycosylation site at N320, but the mechanisms of glycosylation in LHBs remain unclear.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
Bioorthogonal chemistry-mediated self-assembly holds great promise for dynamic molecular imaging in living organisms. However, existing approaches are limited to nanoaggregates with 'always-on' signals, suffering from high signal-to-background ratio (SBR) and compromised detection sensitivity. Herein we report a nitrile-aminothiol (NAT) bioorthogonal fluorogenic probe (CyNA-SS-FK) for ultrasensitive diagnosis of orthotopic hepatocellular carcinoma.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China. Electronic address:
Biodegradable plastics, regarded as an ideal substitute for traditional plastics, are increasingly utilized across various industries. However, due to their unique degradation properties, they can generate microplastics (MPs) at a faster rate, potentially posing a threat to plant development. This study employed transcriptomics and metabolomics to investigate the effects of polylactic acid microplastics (PLA-MPs) on the physiological and biochemical characteristics of Brassica chinensis L.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
Pulsed dipolar electron paramagnetic resonance (PD-EPR) measurement is a powerful technique for characterizing the interactions and conformational changes of biomolecules. The extraction of these distance restraints from PD-EPR experiments relies on manipulation of spin-spin pairs. The orthogonal spin labeling approach offers unique advantages by providing multiple distances between different spin-spin pairs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!