The existing time-frequency analysis (TFA) methods mainly highlight the time-frequency ridges of the interested components by optimizing the time-frequency plane to facilitate the extraction of the relevant components. Generalized demodulation (GD), order tracking (OT), and other methods are generally used in conjunction with the TFA methods to realize the transition from a time-varying signal to a stationary signal, and finally identify the fault feature through a time-frequency plane. Generally, it is necessary to clarify the accuracy of the estimated components such as the rotational frequency or the fault characteristic frequency (FCF) during the operation of the GD or OT methods. Unfortunately, it is not only difficult to extract and locate rotational frequency or FCF, but also complicated in the whole estimation process. In this paper, a simple yet readable method is proposed to reveal the fault feature of time-varying signals. First, the method only needs to extract an arbitrary instantaneous frequency (IF). This is different from the GD method which needs to estimate and locate all phase functions. Then, it converts all variable frequency curves into corresponding lines parallel to the frequency axis based on the extracted IF to determine the proportional relationship between the components. Finally, to further improve the readability of the final results, we reduce the dimension of the transformed time-frequency representation to generate a two-dimensional (2D) energy-frequency map with high resolution and the same proportion. Subsequently, the performance is validated by simulated and experimental data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679271PMC
http://dx.doi.org/10.3390/s19143154DOI Listing

Publication Analysis

Top Keywords

fault feature
12
time-varying signals
8
tfa methods
8
time-frequency plane
8
rotational frequency
8
frequency fcf
8
frequency
6
time-frequency
5
novel fault
4
feature recognition
4

Similar Publications

The construction of a predictive model that accurately reflects the spontaneous combustion temperature of coal in goaf is fundamental to monitoring and early warning systems for thermodynamic disasters, including coal spontaneous combustion and gas explosions. In this paper, on the basis of programming temperature experiment and industrial analysis, 381 data sets of 9 coal types are established, and feature selection was executed through the utilization of the Pearson correlation coefficient, ultimately identifying O, CO, CO, CH, CH, CH/CH, CH/CH, CH/CH, CO/CO, and CO/O as input indicators for the prediction model. The chosen indicator data were divided into training and testing sets in a 4:1 ratio, the Particle Swarm Optimization (PSO) methodology was applied to optimize the parameters of the XGBoost regressor, and a universal PSO-XGBoost prediction model is proposed.

View Article and Find Full Text PDF

The seismic refraction technique has demonstrated its efficiency as a cost-effective geophysical approach for bedrock investigation, which is very important for major construction projects. In the southern part of New Qena City, in the Eastern Desert of Egypt, construction of many domestic facilities is planned. Therefore, a prior investigation focusing on bedrock is required to validate the site for construction and other projects.

View Article and Find Full Text PDF

In this paper, the transfer matrix method is used to study the dispersion of acoustic waves in a finite periodic expansion chambers system with a defect. Two kinds of structures are studied. The first one is formed by expansion chambers, which are symmetrical concerning a defect, and the second one is asymmetrical with a defect.

View Article and Find Full Text PDF

A slab window in the south rim of the Parece-Vela Basin.

Sci Rep

January 2025

Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China.

Slab windows represent regions within the mantle that are largely devoid of slab material, facilitating direct communication between the mantle above and below the subducting slab. This unprecedented interaction disrupts the conventional material-energy exchange mechanisms between the subducted slab and mantle wedge, giving rise to anomalous heat flow, distinct magmatism, metamorphism, and geophysical features. Geochemical analyses of samples collected from the southern margin of the Parece-Vela Basin have illuminated the magmatic processes associated with a slab window.

View Article and Find Full Text PDF

Heterogeneous fault architecture affects crustal seismotectonics and fluid migration. When studying it, we commonly rely on static conceptual models that generally overlook the absolute time dimension of fault (re)activation. Heterogenous faults, however, represent the end-result of protracted, cumulative and intricate deformation histories.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!