The laser induced breakdown optical emission spectroscopy technique has been employed for the analysis of silicon sample in the atmospheric air. Laser irradiance of 1 × 10 Wcm was created on specimen of silicon sample surface to generate the plasma plume by using the fundamental of Nd:YAG laser pulse. This laser produced silicon plasma was captured through the LIBS 2000 Spectrometer for the subsequent analysis of silicon sample. The electron temperature of silicon plasma is estimated to be 7500 K to 4000 K while electron number density of silicon plasma lies 3.2 × 10 to 1.8 × 10. In spatially resolved laser induced plasma and this temperature of silicon plasma has been estimated from the Boltzmann plot method to be in local thermodynamic equilibrium, and electron number density of silicon plasma has been estimated from the Stark width broadening at λ ~ 288.1 nm respectively. Observed result in spatially resolved laser plasma which shows the recombination rate of plasma plume along the direction of expansion. Which also affects on the temperature and density of silicon plasma besides the intensity decreasing factor with distance in silicon ionic and neutrals transition lines is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2019.117374 | DOI Listing |
Sensors (Basel)
January 2025
Institute of Nanotechnologies, Electronics and Equipment Engineering, Southern Federal University, 347922 Taganrog, Russia.
One of the challenging problems in the research and development of vibration sensors relates to the formation of Ohmic contacts for the removal of an electrical signal. In some cases, it is proposed to use arrays of carbon nanotubes (CNTs), which can serve as highly elastic electrode materials for vibration sensors. The purpose of this work is to study the effect of a current-collecting layer of CNTs grown over silicon on the properties of a lead zirconate titanate (PZT) film, which is frequently employed in mechanical vibration sensors or energy harvesters.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Anhui Huasun Energy Company, Limited, Xuancheng 242000, China.
A rear emitter with a p-type boron-doped hydrogenated amorphous silicon/nanocrystalline silicon [a-Si:H(p)/nc-Si:H(p)] stack was prepared for the silicon heterojunction (SHJ) solar cell to improve its short-circuit current density (). CO plasma treatment (CO PT) was applied to a-Si:H(p) to facilitate the crystallization of the subsequently deposited nc-Si:H(p). To evaluate the effect of the CO PT, two different nc-Si:H(p) layers with low and high crystallinity (χ) were investigated.
View Article and Find Full Text PDFJ Appl Biomater Funct Mater
January 2025
Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
Hydroxyapatite, renowned for its biocompatibility and osteoconductive properties, plays a fundamental role in bone regeneration owing to its resemblance to natural bone mineral, thus offering considerable potential for advancing tissue engineering strategies. In this article, the innovative integration of silicon ions into biogenic (bovine-derived) hydroxyapatite (SiBHA) via a tailored sol-gel process is reported. The resultant SiBHA scaffolds exhibited an interconnected microporous structure with a total porosity of 70% and pore dimensions ranging from 120 to 650 µm.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China.
Faraday cages are extensively utilized in plasma-based etching and deposition processes to regulate ion behavior due to their shielding effect on electromagnetic fields. Herein, vertical silicon nanopillar arrays are fabricated through SF and O reactive ion etching. By incorporation of a Faraday cage in the plasma equipment, the impact of the Faraday cage on the morphology of the silicon nanopillars is analyzed; the Faraday cage blocks out the sputtered particles and eradicates the formation of silicon nanograss.
View Article and Find Full Text PDFLangmuir
January 2025
ESYCOM, CNRS-UMR 9007, Université Gustave Eiffel, F-77454 Marne-la-Vallée, France.
This study investigates the synthesis, characterization, and functional properties of well-aligned zinc oxide (ZnO) nanowires (NWs) obtained by a two-step hydrothermal method. ZnO NWs were grown on silicon substrates precoated with a ZnO seed layer. The growth process was conducted at 90 °C for different durations (2, 3, and 4 h) to examine the time-dependent evolution of the nanowire properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!