FNDC5 inhibits foam cell formation and monocyte adhesion in vascular smooth muscle cells via suppressing NFκB-mediated NLRP3 upregulation.

Vascul Pharmacol

Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China. Electronic address:

Published: October 2019

Foam cell formation and monocytes adhesion are key events in pathogenesis of atherosclerosis. Vascular smooth muscle cells (VSMCs) are an important origin of foam cells besides macrophages. Fibronectin type III domain containing protein 5 (FNDC5) is a protein, which induces browning of fat and attenuates glucose/lipid metabolic derangements in obese mice. The present study was designed to determine the roles of FNDC5 in inhibiting foam cell formation and monocyte adhesion in VSMCs and its underlying mechanisms. Oxidized low-density lipoprotein (oxLDL) was used to induce foam cell formation and monocyte adhesion in human aortic VSMCs. Foam cell formation was evaluated by intracellular lipid droplets, cholesterol contents, and mRNA levels of acyl-coenzyme A: cholesterol acyltransferase 1 (ACAT-1) and ATP binding cassette transporter A-1 (ABCA-1). Monocyte adhesion was evaluated by the number of monocytes adhered to VSMCs and mRNA levels of monocyte chemotactic protein-1 (MCP-1) and vascular cell adhesion molecule-1 (VCAM-1). FNDC5 inhibited oxLDL-induced foam cell formation, monocyte adhesion, ABCA-1 mRNA downregulation, and ACAT-1, MCP-1 and VCAM-1 mRNA upregulation in VSMCs. It inhibited oxLDL-induced p65-NFκB nuclear translocation, NLRP3 upregulation, caspase-1 and IL-1β production. Inhibition of NFκB with BMS-345541 or inhibition of NLRP3 inflammasome with MCC950 showed similar effects to FNDC5 in attenuating the oxLDL-induced foam cell formation, monocyte adhesion, and caspase-1 and IL-1β production. The oxLDL-induced NLRP3 upregulation was prevented by BMS-345541 rather than MCC950. These results indicate that FNDC5 inhibits oxLDL-induced foam cell formation and monocyte adhesion in VSMCs via suppressing NFκB-mediated NLRP3 upregulation and IL-1β production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vph.2019.106579DOI Listing

Publication Analysis

Top Keywords

foam cell
32
cell formation
32
monocyte adhesion
28
formation monocyte
24
nlrp3 upregulation
16
oxldl-induced foam
12
il-1β production
12
foam
9
cell
9
adhesion
9

Similar Publications

Cardiometabolic diseases (CMD) are leading causes of death and disability worldwide, with complex pathophysiological mechanisms in which inflammation plays a crucial role. This review aims to elucidate the molecular and cellular mechanisms within the inflammatory microenvironment of atherosclerosis, hypertension and diabetic cardiomyopathy. In atherosclerosis, oxidized low-density lipoprotein (ox-LDL) and pro-inflammatory cytokines such as Interleukin-6 (IL-6) and Tumor Necrosis Factor-alpha (TNF-α) activate immune cells contributing to foam cell formation and arterial wall thickening.

View Article and Find Full Text PDF

The direct electrochemical carboxylation of aryl, benzyl and alkyl halides by CO is described using a magnesium anode and a nickel foam cathode in an undivided cell. The process employs a sacrificial anode and does not require the additional use of a transition metal catalyst or demanding conditions, as the reactions are carried out under galvanostatic mode, at -10 °C and with commercial DMF. Under these operationally simple conditions, an important range of carboxylic acids are affordable.

View Article and Find Full Text PDF

Platelet membrane-modified exosomes targeting plaques to activate autophagy in vascular smooth muscle cells for atherosclerotic therapy.

Drug Deliv Transl Res

January 2025

Center for Coronary Heart Disease, Department of Cardiology, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037, China.

Atherosclerosis is one of the leading causes of ischemic cardiovascular disease worldwide. Recent studies indicated that vascular smooth muscle cells (VSMCs) play an indispensable role in the progression of atherosclerosis. Exosomes derived from mesenchymal stem cells (MSCs) have demonstrated promising clinical applications in the treatment of atherosclerosis.

View Article and Find Full Text PDF

Mycoplasma pneumoniae drives macrophage lipid uptake via GlpD-mediated oxidation, facilitating foam cell formation.

Int J Med Microbiol

January 2025

Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.

Cardiovascular diseases, primarily caused by atherosclerosis, are a major public health concern worldwide. Atherosclerosis is characterized by chronic inflammation and lipid accumulation in the arterial wall, leading to plaque formation. In this process, macrophages play a crucial role by ingesting lipids and transforming into foam cells, which contribute to plaque instability and cardiovascular events.

View Article and Find Full Text PDF

Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.

Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!