Central serous chorioretinopathy (CSC) is a common cause of central vision loss, primarily affecting men 20-60 years of age. To date, no consensus has been reached regarding the classification of CSC, and a wide variety of interventions have been proposed, reflecting the controversy associated with treating this disease. The recent publication of appropriately powered randomised controlled trials such as the PLACE trial, as well as large retrospective, non-randomised treatment studies regarding the treatment of CSC suggest the feasibility of a more evidence-based approach when considering treatment options. The aim of this review is to provide a comprehensive overview of the current rationale and evidence with respect to the variety of interventions available for treating CSC, including pharmacology, laser treatment, and photodynamic therapy. In addition, we describe the complexity of CSC, the challenges associated with treating CSC, and currently ongoing studies. Many treatment strategies such as photodynamic therapy using verteporfin, oral mineralocorticoid antagonists, and micropulse laser treatment have been reported as being effective. Currently, however, the available evidence suggests that half-dose (or half-fluence) photodynamic therapy should be the treatment of choice in chronic CSC, whereas observation may be the preferred approach in acute CSC. Nevertheless, exceptions can be considered based upon patient-specific characteristics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.preteyeres.2019.07.003 | DOI Listing |
Ophthalmol Retina
January 2025
Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada.
J Cosmet Dermatol
January 2025
Department of Dermatology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China.
Adv Mater
January 2025
Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China.
Metastasis, the leading cause of mortality in cancer patients, presents challenges for conventional photodynamic therapy (PDT) due to its reliance on localized light and oxygen application to tumors. To overcome these limitations, a self-sustained organelle-mimicking nanoreactor is developed here with programmable DNA switches that enables bio-chem-photocatalytic cascade-driven starvation-photodynamic synergistic therapy against tumor metastasis. Emulating the compartmentalization and positional assembly strategies found in living cells, this nano-organelle reactor allows quantitative co-compartmentalization of multiple functional modules for the designed self-illuminating chemiexcited PDT system.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, P. R. China.
X-ray induced photodynamic therapy (X-PDT) leverages penetrating X-ray to generate singlet oxygen (O) for treating deep-seated tumors. However, conventional X-PDT typically relies on heavy metal inorganic scintillators and organic photosensitizers to produce O, which presents challenges related to toxicity and energy conversion efficiency. In this study, highly biocompatible organic phosphorescent nanoscintillators based on hydrogen-bonded organic frameworks (HOF) are designed and engineered, termed BPT-HOF@PEG, to enhance X-PDT in hepatocellular carcinoma (HCC) treatment.
View Article and Find Full Text PDFSmall Methods
January 2025
Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China.
Antimicrobial resistance (AMR) has emerged as a global challenge in treating bacterial infections, creating an urgent need for broad-spectrum antimicrobial agents that can effectively combat multidrug-resistant (MDR) bacteria. Despite advancements in novel antimicrobial agents, many fail to comprehensively cover common resistant bacterial strains or undergo rigorous multi-center validation. Herein, a cationic AIE-active photosensitizers are developed, ITPM, derived from a triphenylamine-pyridine backbone to address the MDR challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!