Melanocortin 1 receptor (MC1R) is under investigation as a target for drug delivery for metastatic melanoma therapy and imaging. The purpose of this study was to determine the potential of using BRAF inhibitors (BRAF) and histone deacetylase inhibitors (HDAC) to enhance the delivery of MC1R-targeted radiolabeled peptide ([Pb]DOTA-MC1L) by pharmacologically upregulating the MC1R expression in metastatic melanoma cells and tumors. MC1R expression was analyzed in de-identified melanoma biopsies by immunohistochemical staining. Upregulation of MC1R expression was determined in BRAF cells (A2058) and BRAF wild-type melanoma cells (MEWO) by quantitative real-time polymerase chain reaction, flow cytometry, and receptor-ligand binding assays. The role of microphthalmia-associated transcription factor (MITF) in the upregulation of MC1R was also examined in A2058 and MEWO cells. The effectiveness of [Pb]DOTA-MC1L α-particle radiotherapy in combination with BRAF and/or HDAC was determined in athymic nu/nu mice bearing A2058 and MEWO human melanoma xenografts. High expression of MC1R was observed in situ in clinical melanoma biopsies. BRAF and HDAC significantly increased the MC1R expression (up to 10-fold in mRNA and 4-fold in protein levels) via MITF-dependent pathways, and this increase led to enhanced ligand binding on the cell surface. Inhibition of MITF expression antagonized the upregulation of MC1R in both BRAF and BRAF cells. Combining [Pb]DOTA-MC1L with BRAF and/or HDAC improved the tumor response by increasing the delivery of Pb α-particle emissions to melanoma tumors via augmented MC1R expression. These data suggest that FDA-approved HDAC and BRAF could improve the effectiveness of MC1R-targeted therapies by enhancing drug delivery via upregulated MC1R.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6765223 | PMC |
http://dx.doi.org/10.1021/acs.molpharmaceut.9b00512 | DOI Listing |
Arch Dermatol Res
January 2025
Burn and Wound Repair Center, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, Hebei Province, 050035, China.
This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Dermatology, First Affiliated Hospital of Zhengzhou University, No.1 Longhu Outer Ring Road, Jinshui District, Zhengzhou, 450052, Henan, China.
Vitiligo is a complex autoimmune disease characterized by the loss of melanocytes, leading to skin depigmentation. Despite advances in understanding its genetic and molecular basis, the precise mechanisms driving vitiligo remain elusive. Integrating multiple layers of omics data can provide a comprehensive view of disease pathogenesis and identify potential therapeutic targets.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Anatomy, Dokkyo Medical University School of Medicine, 880 Kita-Kobayashi, Mibu-machi, Shimotsuga-gun 321-0293, Tochigi, Japan.
Mar Drugs
November 2024
Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea.
, a salt-tolerant plant, has demonstrated antioxidant effects, the ability to prevent prostate enlargement, antifungal properties, and skin moisturizing benefits. This study aimed to explore the anti-melanogenic potential of the 70% ethanol extract of (TME) along with its ethyl acetate (TME-EA) and water (TME-A) fractions. TME (10-200 µg/mL), TME-EA (1-15 µg/mL), and TME-A (100-1000 µg/mL) were prepared and applied to B16F10 cells with or without α-MSH for 72 h.
View Article and Find Full Text PDFThe mutation in domestic cats causes variegated patches of reddish/yellow hair and is a defining signature of random X-inactivation in female tortoiseshell and calico cats. Unlike the situation for most coat color genes, there is no apparent homolog for in other mammals. We show that the is caused by a 5 kb deletion that leads to ectopic and melanocyte-specific expression of the ( ) gene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!