The present paper reports a highly stereoselective synthesis of spirooxindole-fused spiropyrazolones through the asymmetric [3 + 2] cyclization reaction of 2-(1-methyl-2-oxoindolin-3-yl)malononitriles with unsaturated pyrazolones under mild conditions. With only a 1 mol % bifunctional squaramide catalyst, a series of chiral dispirocyclic pyrazolone derivatives were attained in high yields (85-97%) with excellent stereoselectivities (up to >99% ee and in all cases >20:1 dr). Moreover, gram-scale synthesis and further transformation of the products were also demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.9b01268 | DOI Listing |
Sci Bull (Beijing)
December 2024
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China. Electronic address:
Divergent synthesis of valuable molecules through common starting materials and metal catalysis represents a longstanding challenge and a significant research goal. We here describe chemodivergent, highly enantio- and regioselective nickel-catalyzed reductive and dehydrogenative coupling reactions of alkynes, aldehydes, and silanes. A single chiral Ni-based catalyst is leveraged to directly prepare three distinct enantioenriched products (silyl-protected trisubstituted chiral allylic alcohols, oxasilacyclopentenes, and silicon-stereogenic oxasilacyclopentenes) in a single chemical operation.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu, PR China.
Artatrovirenols A and B are two newly isolated sesquiterpenoids with a complex caged framework. We report herein a concise synthesis of artatrovirenols A and B in 9 and 8 steps, respectively. The complex caged tetracycle is rapidly constructed from a known planar guaiane-type precursor through a bioinspired intramolecular [4 + 2] cyclization to firstly access artatrovirenol B, which is further transformed into artatrovirenol A through a biomimetic epoxidation-mediated lactonization reaction.
View Article and Find Full Text PDFNat Commun
December 2024
Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Marine cyclopianes are a family of diterpenoid with novel carbon skeleton and diverse biological activities. Herein, we report our synthetic and chemical proteomics studies of cyclopiane diterpenes which culminate in the asymmetric total synthesis of conidiogenones C, K and 12β-hydroxy conidiogenone C, and identification of Immunity-related GTPase family M protein 1 (IRGM1) as a cellular target. Our asymmetric synthesis commences from Wieland-Miescher ketone and features a sequential intramolecular Pauson-Khand reaction and gold-catalyzed Nazarov cyclization to rapidly construct the 6-5-5-5 tetracyclic skeleton.
View Article and Find Full Text PDFJ Org Chem
December 2024
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
A palladium-catalyzed asymmetric chlorocyclization of 1,6-enynes has been described. Controlling the chloride ion concentration in the system by substrate design is the key to achieving asymmetric chlorinated cyclization. In the presence of Pd(PhCN)Cl and chiral phosphoramidite ligands, the reaction accesses diverse chiral ()-α-chloromethylene-γ-butyrolactams with excellent selectivity and enantioselectivity.
View Article and Find Full Text PDFOrg Lett
December 2024
Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.
Herein, we present the enantioselective synthesis of 2,3-dihydro-4-quinolones bearing chiral tetrasubstituted carbons from isatins and 2'-aminoacetophenones. The transformation is mediated by a chiral phosphoric acid catalyst and proceeds via an generated ketimine and subsequent enantioselective intramolecular cyclization. The methodology features a broad scope and functional group tolerance with yields and enantioselectivities of up to 99% and 98% ee.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!