Molecular Scale Solvation in Complex Solutions.

J Am Chem Soc

Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, D-64287 Darmstadt , Germany.

Published: August 2019

Complex solution environments are ubiquitous in nature. Most life science systems contain hydrated macromolecules whose solubility, function and stability are modulated by several small organic molecules or salts (cosolutes) present simultaneously. This Perspective discusses solvation of mixed cosolutes in water. Recent computer simulations and experiments have shown that nonadditive cosolute effects on the water solubility of thermoresponsive polymers and on protein stability have a common physical origin, rooted in solvent-excluded volume effects determined by mutually enhanced cosolute hydration in bulk. We discuss mixtures of weakly and strongly hydrated salts in the anionic Hofmeister series and mixtures of urea and trimethylamine -oxide. Nonadditive phenomena in these mixtures lead to intriguing effects including consecutive polymer collapse and swelling transitions and counteraction of denaturant-induced protein unfolding. The combination of today's advanced simulation methods and spectroscopy techniques should be used to improve further the understanding of these complex aqueous solubility problems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.9b03469DOI Listing

Publication Analysis

Top Keywords

molecular scale
4
scale solvation
4
solvation complex
4
complex solutions
4
solutions complex
4
complex solution
4
solution environments
4
environments ubiquitous
4
ubiquitous nature
4
nature life
4

Similar Publications

Single-crystal Au(111), renowned for its chemically inert surface, long-range "herringbone" reconstruction, and high electrical conductivity, has long served as an exemplary template in diverse fields, , crystal epitaxy, electronics, and electrocatalysis. However, commercial Au(111) products are high-priced and limited to centimeter sizes, largely restricting their broad applications. Herein, a low-cost, high-reproducible method is developed to produce 4 in.

View Article and Find Full Text PDF

Meta-analyses of Culex blood-meals indicates strong regional effect on feeding patterns.

PLoS Negl Trop Dis

January 2025

Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom.

Understanding host utilization by mosquito vectors is essential to assess the risk of vector-borne diseases. Many studies have investigated the feeding patterns of Culex mosquitoes by molecular analysis of blood-meals from field collected mosquitoes. However, these individual small-scale studies only provide a limited understanding of the complex host-vector interactions when considered in isolation.

View Article and Find Full Text PDF

Some unique asexual species persist over time and contradict the consensus that sex is a prerequisite for long-term evolutionary survival. How they escape the dead-end fate remains enigmatic. Here, we generated a haplotype-resolved genome assembly on the basis of a single individual and collected genomic data from worldwide populations of the parthenogenetic diploid oribatid mite to identify signatures of persistence without sex.

View Article and Find Full Text PDF

mettannotator: a comprehensive and scalable Nextflow annotation pipeline for prokaryotic assemblies.

Bioinformatics

January 2025

European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom.

Summary: In recent years there has been a surge in prokaryotic genome assemblies, coming from both isolated organisms and environmental samples. These assemblies often include novel species that are poorly represented in reference databases creating a need for a tool that can annotate both well-described and novel taxa, and can run at scale. Here, we present mettannotator-a comprehensive, scalable Nextflow pipeline for prokaryotic genome annotation that identifies coding and non-coding regions, predicts protein functions, including antimicrobial resistance, and delineates gene clusters.

View Article and Find Full Text PDF

Adsorption behaviors are typically examined through adsorption isotherms, which measure the average adsorption amount as a function of partial pressure or time. However, this method is incapable of identifying inhomogeneities across the adsorbent, which may occur in the presence of strong intermolecular interactions of the adsorbate. In this study, we visualize the adsorption of molecular iodine (I) in the metal-organic framework material MFM-300(Sc) using high-resolution scanning transmission electron microscopy (STEM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!