With continuous minimization of nanodevices, the dimensions of metallic materials used in nanodevices decrease to a few nanometers. Understanding the structural stability and deformation behavior of these small-sized metallic materials is important for their practical applications. Here we report our atomic-resolution observation of the deformation processes of Ag nanowires with widths of ∼3 nm. The nanowires under tension experienced plastic deformation via partial dislocation activities, which led to deformation twinning in and homogeneous elongation of the nanowires, and surface atom diffusion that reduced the nanowires' width but did not contribute to the nanowire elongation. The diffusion of surface atoms was initiated at surface steps introduced by the partial dislocation activities, leading to fracture of the nanowires with relatively low homogeneous elongation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.9b00474 | DOI Listing |
Sci Total Environ
January 2025
University College London, Central House, 14 Upper Woburn Place, London WC1H 0NN, UK. Electronic address:
This paper investigates heritage climatology through global analysis of damage functions for collections, aiming to learn about the reliability of these functions and the field itself. It addresses the growing interest in geospatial analysis of climate hazards for cultural heritage, proposing parameters that refine climate-related deterioration processes. Using global daily climate data from 1991 to 2020, the study assesses damage functions reliant on temperature and relative humidity inputs, including damage functions for paper and metals, alongside indices for humidity fluctuations and mould growth.
View Article and Find Full Text PDFFood Chem
January 2025
State Key Laboratory for Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China. Electronic address:
Heavy metals and mycotoxins are important contaminants in food pollution. Sensitive, reliable, and rapid detection of heavy metals and mycotoxins is crucial for human health. In this work, imidazole-functionalized aggregation-induced emission (AIE) molecule tetra-(4-pyridylphenyl) ethylene (TPPE) was used as a precise and specific probe for Ag detection, with a limit of detection (LOD) of 0.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000 PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095 PR China; Institutes of Agricultural Science and Technology Development, Yangzhou 225127 Jiangsu, PR China.
In this work, UiO-66-l-cys with enhanced adsorption capacity for Hg(Ⅱ) in water was synthesized through a facile two-step partial ligand replacement strategy. The presence of the functional groups significantly enhanced the capacity of the material for Hg(Ⅱ). According to the Langmuir model, the maximum theoretical adsorption capacity was calculated to be 1321.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China. Electronic address:
Bacterial infections and excessive accumulation of wound exudates remain the main obstacles and clinical challenges to the healing of chronic cutaneous wounds. Conventional dressings are commonly used medical materials for acute wound care, but they do not possess the bacterial infection resistance required for chronic wound treatment. Herein, we prepared pure chitosan nanofibrous membranes (C) by electrospinning with poly(ethylene oxide) (PEO) as a sacrificial additive and then loaded with zinc-based metal-organic framework (MOF) as a novel antimicrobial wound dressing.
View Article and Find Full Text PDFTalanta
January 2025
Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore. Electronic address:
Heavy metals and metalloids are the most common environmental pollutants. Toxicity characteristic leaching procedure (TCLP) is a standard operating procedure that is used to assess heavy metal and metalloid compositions, and evaluate the hazardous nature of waste and waste-derived materials for reuse or disposal, such as determining landfill suitability. However, TCLP and the following detections are time-consuming and require bulky laboratory-based instruments and trained personnel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!