Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, we produced curcumin loaded gelatine microparticles, through spray-drying method, with dialdehyde carboxymethyl cellulose (DCMC) which is introduced as a new cross-linking agent for drug delivery systems and examined toxicities by comparison of traditional cross-linking agents. We employed various parameters in the production and tried to develop the most efficient drug delivery system through Taguchi method by examining efficiencies on gastric cancer under conditions. The results indicated gelatine microparticles cross-linked with DCMC offers more biocompatible drug delivery systems. The particle size of the microparticles produced different parameters varies from 1.926 to 3.357 µm. Curcumin was substantially remained stable after 6 months. This study indicates potential use of DCMC cross-linked gelatine microparticles as drug delivery vehicle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/02652048.2019.1646337 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!