The tunable growth of metal-organic materials has implications for engineering particles and surfaces for diverse applications. Specifically, controlling the self-assembly of metal-phenolic networks (MPNs), an emerging class of metal-organic materials, is challenging, as previous studies suggest that growth often terminates through kinetic trapping. Herein, kinetic strategies were used to temporally and spatially control MPN growth by promoting self-correction of the coordinating building blocks through oxidation-mediated MPN assembly. The formation and growth mechanisms were investigated and used to engineer films with microporous structures and continuous gradients. Moreover, reactive oxygen species generated by ultrasonication expedite oxidation and result in faster (ca. 30 times) film growth than that achieved by other MPN assembly methods. This study expands our understanding of metal-phenolic chemistry towards engineering metal-phenolic materials for various applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201907666 | DOI Listing |
Acc Chem Res
January 2025
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
ConspectusFor chemical reactions with complex pathways, it is extremely difficult to adjust the catalytic performance. The previous strategies on this issue mainly focused on modifying the fine structures of the catalysts, including optimization of the geometric/electronic structure of the metal nanoparticles (NPs), regulation of the chemical composition/morphology of the supports, and/or adjustment of the metal-support interactions to modulate the reaction kinetics on the catalyst surface. Although significant advances have been achieved, the catalytic performance is still unsatisfactory.
View Article and Find Full Text PDFAdv Mater
January 2025
Michael Grätzel Center for Mesoscopic Solar Cells Wuhan National Laboratory for Optoelectronics Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
Carbon-based printable mesoscopic solar cells (p-MPSCs) offer significant advantages for industrialization due to their simple fabrication process, low cost, and scalability. Recently, the certified power conversion efficiency of p-MPSCs has exceeded 22%, drawing considerable attention from the community. However, the key challenge in improving device performance is achieving uniform and high-quality perovskite crystallization within the mesoporous structure.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049 China. Electronic address:
Transition metal phosphorus (TMPs) and sulfides have attracted extensive attention as important candidates to replace noble metal-based hydrogen evolution (HER) catalysts. However, the insufficient specific surface area, low conductivity and easy detachments from electrode seriously affect the HER catalytic activity and stability. Herein, a novel self-supported hollow Janus-structured NiCoP/P-MoS heterojunction is designed on carbon cloth (CC) as high-performance electrocatalyst for alkaline HER.
View Article and Find Full Text PDFPain Ther
January 2025
Robert Wood Johnson University Hospital/Rutgers Medical School, New Brunswick, NJ, USA.
Introduction: Many interventional strategies are commonly used to treat chronic low back pain (CLBP), though few are specifically intended to target the distinct underlying pathomechanisms causing low back pain. Restorative neurostimulation has been suggested as a specific treatment for mechanical CLBP resulting from multifidus dysfunction. In this randomized controlled trial, we report outcomes from a cohort of patients with CLBP associated with multifidus dysfunction treated with restorative neurostimulation compared to those randomized to a control group receiving optimal medical management (OMM) over 1 year.
View Article and Find Full Text PDFJ Neurol
January 2025
Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.
Background: Impaired impulse control is often seen in Parkinson's disease (PD) patients using dopamine agonists.
Methods: We performed a therapeutic drug monitoring study of 100 PD patients using ropinirole or pramipexole extended release. Three blood samples were collected on the same day.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!