Oxidation-Mediated Kinetic Strategies for Engineering Metal-Phenolic Networks.

Angew Chem Int Ed Engl

Centre of Excellence in Convergent Bio-Nano Science and Technology, and the, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.

Published: September 2019

The tunable growth of metal-organic materials has implications for engineering particles and surfaces for diverse applications. Specifically, controlling the self-assembly of metal-phenolic networks (MPNs), an emerging class of metal-organic materials, is challenging, as previous studies suggest that growth often terminates through kinetic trapping. Herein, kinetic strategies were used to temporally and spatially control MPN growth by promoting self-correction of the coordinating building blocks through oxidation-mediated MPN assembly. The formation and growth mechanisms were investigated and used to engineer films with microporous structures and continuous gradients. Moreover, reactive oxygen species generated by ultrasonication expedite oxidation and result in faster (ca. 30 times) film growth than that achieved by other MPN assembly methods. This study expands our understanding of metal-phenolic chemistry towards engineering metal-phenolic materials for various applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201907666DOI Listing

Publication Analysis

Top Keywords

kinetic strategies
8
engineering metal-phenolic
8
metal-phenolic networks
8
metal-organic materials
8
mpn assembly
8
growth
5
oxidation-mediated kinetic
4
strategies engineering
4
metal-phenolic
4
networks tunable
4

Similar Publications

Adjustment of Molecular Sorption Equilibrium on Catalyst Surface for Boosting Catalysis.

Acc Chem Res

January 2025

Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.

ConspectusFor chemical reactions with complex pathways, it is extremely difficult to adjust the catalytic performance. The previous strategies on this issue mainly focused on modifying the fine structures of the catalysts, including optimization of the geometric/electronic structure of the metal nanoparticles (NPs), regulation of the chemical composition/morphology of the supports, and/or adjustment of the metal-support interactions to modulate the reaction kinetics on the catalyst surface. Although significant advances have been achieved, the catalytic performance is still unsatisfactory.

View Article and Find Full Text PDF

Recent Progress and Advances of Perovskite Crystallization in Carbon-Based Printable Mesoscopic Solar Cells.

Adv Mater

January 2025

Michael Grätzel Center for Mesoscopic Solar Cells Wuhan National Laboratory for Optoelectronics Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.

Carbon-based printable mesoscopic solar cells (p-MPSCs) offer significant advantages for industrialization due to their simple fabrication process, low cost, and scalability. Recently, the certified power conversion efficiency of p-MPSCs has exceeded 22%, drawing considerable attention from the community. However, the key challenge in improving device performance is achieving uniform and high-quality perovskite crystallization within the mesoporous structure.

View Article and Find Full Text PDF

Transition metal phosphorus (TMPs) and sulfides have attracted extensive attention as important candidates to replace noble metal-based hydrogen evolution (HER) catalysts. However, the insufficient specific surface area, low conductivity and easy detachments from electrode seriously affect the HER catalytic activity and stability. Herein, a novel self-supported hollow Janus-structured NiCoP/P-MoS heterojunction is designed on carbon cloth (CC) as high-performance electrocatalyst for alkaline HER.

View Article and Find Full Text PDF

Introduction: Many interventional strategies are commonly used to treat chronic low back pain (CLBP), though few are specifically intended to target the distinct underlying pathomechanisms causing low back pain. Restorative neurostimulation has been suggested as a specific treatment for mechanical CLBP resulting from multifidus dysfunction. In this randomized controlled trial, we report outcomes from a cohort of patients with CLBP associated with multifidus dysfunction treated with restorative neurostimulation compared to those randomized to a control group receiving optimal medical management (OMM) over 1 year.

View Article and Find Full Text PDF

Background: Impaired impulse control is often seen in Parkinson's disease (PD) patients using dopamine agonists.

Methods: We performed a therapeutic drug monitoring study of 100 PD patients using ropinirole or pramipexole extended release. Three blood samples were collected on the same day.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!