Modulation of the activation status of immune cell populations during pregnancy depends on placental villous cytotrophoblast (VCT) cells and the syncytiotrophoblast (STB). Failure in the establishment of this immunoregulatory function leads to pregnancy complications. Our laboratory has been studying Syncytin-2 (Syn-2), an endogenous retroviral protein expressed in placenta and on the surface of placental exosomes. This protein plays an important role not only in STB formation through its fusogenic properties, but also through its immunosuppressive domain (ISD). Considering that Syn-2 expression is importantly reduced in preeclamptic placentas, we were interested in addressing its possible immunoregulatory effects on T cells. Activated Jurkat T cells and peripheral blood mononuclear cells (PBMCs) were treated with monomeric or dimerized version of a control or a Syn-2 ISD peptide. Change in phosphorylation levels of ERK1/2 MAP kinases was selectively noted in Jurkat cells treated with the dimerized ISD peptide. Upon incubation with the dimerized Syn-2 ISD peptide, significant reduction in Th1 cytokine production was further demonstrated by ELISA and Human Th1/Th2 Panel Multi-Analyte Flow Assay. To determine if exosome-associated Syn-2 could also be immunosuppressive placental exosomes were incubated with activated Jurkat and PBMCs. Quantification of Th1 cytokines in the supernatants revealed severe reduction in T cell activation. Interestingly, exosomes from Syn-2-silenced VCT incubated with PBMCs were less suppressive when compared with exosome derived from VCT transfected with control small interfering RNA (siRNA). Our results suggest that Syn-2 is an important immune regulator both locally and systemically, via its association with placental exosomes.

Download full-text PDF

Source
http://dx.doi.org/10.1093/biolre/ioz124DOI Listing

Publication Analysis

Top Keywords

placental exosomes
12
isd peptide
12
activated jurkat
8
jurkat cells
8
syn-2 isd
8
syn-2
6
cells
5
endogenous retrovirus-encoded
4
retrovirus-encoded syncytin-2
4
syncytin-2 contributes
4

Similar Publications

Introduction: Group B Streptococcus (GBS) is an opportunistic pathogen that can induce chorioamnionitis (CA), increasing the risk of neurodevelopmental disorders (NDDs) in the offspring. The placenta facilitates maternal-fetal communication through the release of extracellular vesicles (EVs), which may carry inflammatory molecules such as interleukin (IL)-1. Although the role of EVs in immune modulation is well established, their specific characterization in the context of GBS-induced CA has not yet been investigated.

View Article and Find Full Text PDF

Objective: To investigate the effects of the exosomal miR-494 targeting phospholipinositol 3-kinase (PI3K)/protein kinase B (AKT)/rapamycin target protein (mTOR) pathway on proliferation, migration, and invasion of trophoblast cells.

Methods: Decidual macrophages were randomly divided into control group, mimic NC group, miR-494 mimic group, inhibitor NC group, and miR-494 inhibitor group. Each group was transfected with corresponding miR-494 mimic NC, miR-494 mimic, and inhibitor NC and miR-494 inhibitor, while the cells of control group were only replaced with fresh medium.

View Article and Find Full Text PDF

Background: MiR-519d-3p, also called specific placenta biomarkers, is a member of the Chromosome 19 miRNA Cluster (C19MC) with the highest concentrations of miRNAs in human placenta and maternal serum. These miRNAs are secreted by fetal trophoblast cells within extracellular vesicles (EVs) and interact with the mother's immune cells, which has been proposed to be crucial for immunological tolerance at the placental-maternal interface. A key mechanism in preeclampsia, a multifactorial, multipath hypertensive pregnancy illness, is an immunological imbalance between the mother and the fetus.

View Article and Find Full Text PDF

Sepsis is a risk factor associated with increasing neonatal morbidity and mortality, acute lung injury, and chronic lung disease. While stem cell therapy has shown promise in alleviating acute lung injury, its effects are primarily exerted through paracrine mechanisms rather than local engraftment. Accumulating evidence suggests that these paracrine effects are mediated by mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs), which play a critical role in immune system modulation and tissue regeneration.

View Article and Find Full Text PDF

Background: Preeclampsia (PE) is a pregnancy complication characterized by hypertension, proteinuria, endothelial dysfunction, and complement dysregulation. Placenta-derived extracellular vesicles (EVs), necessary in maternal-fetal communication, might contribute to PE pathogenesis. Moreover, neutrophil extracellular traps (NETs) play a pathogenic role in other complement-mediated pathologies, and their contribution in PE remains unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!