The aim of this study was to determine whether deleting the gene encoding glutaredoxin-2 (GRX2) could protect mice from diet-induced weight gain. Subjecting wild-type littermates to a high fat diet (HFD) induced a significant increase in overall body mass, white adipose tissue hypertrophy, lipid droplet accumulation in hepatocytes, and higher circulating insulin and triglyceride levels. In contrast, GRX2 heterozygotes (GRX2) fed an HFD had a body mass, white adipose tissue weight, and hepatic and circulating lipid and insulin levels similar to littermates fed a control diet. Examination of the bioenergetics of muscle mitochondria revealed that this protective effect was associated with an increase in respiration and proton leaks. Muscle mitochondria from GRX2 mice had a ∼2- to 3-fold increase in state 3 (phosphorylating) respiration when pyruvate/malate or succinate served as substrates and a ∼4-fold increase when palmitoyl-carnitine was being oxidized. Proton leaks were ∼2- to 3-fold higher in GRX2 muscle mitochondria. Treatment of mitochondria with either guanosine diphosphate, genipin, or octanoyl-carnitine revealed that the higher rate of O consumption under state 4 conditions was associated with increased leaks through uncoupling protein-3 and adenine nucleotide translocase. GRX2 mitochondria also had better protection from oxidative distress. For the first time, we demonstrate that deleting the gene can protect from diet-induced weight gain and the development of obesity-related disorders. Deleting the gene protects mice from diet-induced weight gain. This effect was related to an increase in muscle fuel combustion, mitochondrial respiration, proton leaks, and reactive oxygen species handling. 31, 1272-1288.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ars.2018.7715 | DOI Listing |
Nat Cell Biol
January 2025
Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
Outer mitochondrial membrane (OMM) proteins communicate with the cytosol and other organelles, including the endoplasmic reticulum. This communication is important in thermogenic adipocytes to increase the energy expenditure that controls body temperature and weight. However, the regulatory mechanisms of OMM protein insertion are poorly understood.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Linkoping University, Linkoping, Sweden.
Background: Excessive dietary fat is not only a risk factor for metabolic disorders but also for premature cognitive decline and Alzheimer's disease. Recent findings from our study revealed that even a few days of a high-fat diet (HFD) are sufficient to disrupt hippocampal bioenergetics, activate microglia, and induce cognitive decline in mice. We hypothesize that microglia, rather than merely responding to diet-induced damage, play a critical role in disrupting synaptic homeostasis.
View Article and Find Full Text PDFSci Rep
January 2025
Cardiovascular Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
Heart failure with preserved ejection fraction (HFpEF) is increasingly common but its pathogenesis is poorly understood. The ability to assess genetic and pharmacologic interventions is hampered by the lack of robust preclinical mouse models of HFpEF. We developed a novel "two-hit" model, which combines obesity and insulin resistance with chronic pressure overload to recapitulate clinical features of HFpEF.
View Article and Find Full Text PDFBone
December 2024
Marrow Adiposity and Bone Lab, MABLab-ULR4490, Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France. Electronic address:
Obesity is a risk factor of developing type 2 diabetes (T2D) and metabolic complications, through systemic inflammation and insulin resistance. It has also been associated with increased bone marrow adipocytes along with increased bone fragility and fracture risk. However, the differential effects of obesity and T2D on bone fragility remain unclear.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Department of Food Science and Nutrition, Dankook University, Cheonan, Republic of Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!