In eukaryotic cells, each process, in which DNA is involved, should take place in the context of a chromatin structure. DNA double-strand breaks (DSBs) are one of the most deleterious lesions often leading to chromosomal rearrangement. In response to environmental stresses, cells have developed repair mechanisms to eliminate the DSBs. Upon DSB induction, several factors play roles in chromatin relaxation by catalysing the appropriate histone posttranslational modification (PTM) steps, therefore promoting the access of the repair factors to the DSBs. Among these PTMs, the phosphorylation of the histone variant H2AX at its Ser139 residue (also known as γH2AX) could be observed at the break sites. The structure of a DNA double-strand break induced repair focus has to be organized during the repair as it contributes to the accessibility of specific repair proteins to the damaged site. Our aim was to develop a quantitative approach to analyse the morphology of single repair foci by super-resolution dSTORM microscopy to gain insight into chromatin organization in DNA repair. We have established a specific dSTORM measurement process by developing a new analytical algorithm for gaining quantitative information about chromatin morphology and repair foci topology at an individual γH2AX enriched repair focus. Using this method we quantified single repair foci to show the distribution of γH2AX. The image of individual γH2AX referred to as the Single target Molecule response scatter Plot (SMPlot) was obtained by using high lateral resolution dSTORM images. Determination of the average localization numbers in an SMPlot was one of the key steps of quantitative dSTORM. A repair focus is made up of nanofoci. Such a substructure of repair foci can only be resolved and detected with super-resolution microscopy. Determination of the number of γH2AXs in the nanofoci was another key step of quantitative dSTORM. Additionally, based on our new analysis method, we were able to show the number of nucleosomes in each nanofocus that could allow us to define the possible chromatin structure and the nucleosome density around the break sites. This method is one of the first demonstrations of a single-cell based quantitative measurement of a discrete repair focus, which could provide new opportunities to categorize the spatial organization of nanofoci by parametric determination of topological similarity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9nr03696b | DOI Listing |
DNA double strand breaks (DSBs) are widely considered the most cytotoxic DNA lesions occurring in cells because they physically disrupt the connectivity of the DNA double helix. Homologous recombination (HR) is a high-fidelity DSB repair pathway that copies the sequence spanning the DNA break from a homologous template, most commonly the sister chromatid. How both DNA ends, and the sister chromatid are held in close proximity during HR is unknown.
View Article and Find Full Text PDFBurns Trauma
January 2025
Department of Arthroscopic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai 200233, China.
Objective: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder that significantly impairs muscle regeneration following injuries, contributing to numerous complications and reduced quality of life. There is an urgent need for therapeutic strategies that can enhance muscle regeneration and alleviate these pathological mechanisms. In this study, we evaluate the therapeutic efficacy of W-GA nanodots, which are composed of gallic acid (GA) and tungstate (W6+), on muscle regeneration in type 2 diabetes mellitus (T2D)-induced muscle injury, with a focus on their anti-inflammatory and antioxidative effects.
View Article and Find Full Text PDFPerspect Clin Res
August 2024
Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, UP, India.
Stem cell research is a major focus for scientific and medical communities worldwide due to the potential for stem cells to restore function lost due to disease, trauma, congenital abnormalities, and aging. Stem cells can repair, replace, or regenerate damaged cells, tissues, or organs, making them an important area of research in regenerative medicine. India is emerging as a prominent hub for the development of stem cell therapy (SCT), and it is important to assess the current state of stem cell research in India and the potential for advancement to promote stem cell-based therapy.
View Article and Find Full Text PDFBiotechnol J
January 2025
Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China.
Osteochondral damage, caused by trauma, tumors, or degenerative diseases, presents a major challenge due to the limited self-repair capacity of the tissue. Traditional treatments often result in significant trauma and unpredictable outcomes. Recent advances in bone/cartilage tissue engineering, particularly in scaffold materials and fabrication technologies, offer promising solutions for osteochondral regeneration.
View Article and Find Full Text PDFEur J Vasc Endovasc Surg
January 2025
Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain; Department of Vascular, Endovascular Surgery and Angiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain. Electronic address:
Objective: Abdominal aortic aneurysm (AAA) in a patient with an underlying heritable aortic disease (HAD) is rare, and evidence based recommendations for its management are lacking. This study aimed to generate a consensus from multidisciplinary specialists on the diagnosis, treatment, and surveillance of AAA associated with HAD and to define topics of interest for future research.
Methods: A Delphi consensus was designed involving European multidisciplinary specialists and reported using the ACcurate COnsensus Reporting Document (ACCORD) reporting guideline.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!