Melanocortin agonists are ancient neuropeptides that have steroidogenesis and anti-inflammatory properties. They activate melanocortin receptors (MCR), a family of five seven-transmembrane G-protein coupled receptors. MC1R and MC3R are mainly involved in immunomodulatory effects. Adrenocorticotropin hormone (ACTH) and alpha-Melanocortin stimulating hormone (α-MSH) reduce pro-inflammatory cytokines in several pulmonary inflammatory disorders including asthma, sarcoidosis, and the acute respiratory distress syndrome. They have also been shown to reduce fibrogenesis in animal models with pulmonary fibrosis. By understanding the functions of MCR in macrophages, T-helper cell type 1, and T-helper cell type 17, we may uncover the mechanism of action of melanocortin agonists in sarcoidosis. Further translational and clinical research is needed to define the role of ACTH and α-MSH in pulmonary diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6610340PMC
http://dx.doi.org/10.3389/fmed.2019.00145DOI Listing

Publication Analysis

Top Keywords

melanocortin receptors
8
melanocortin agonists
8
t-helper cell
8
cell type
8
melanocortin
4
receptors agonists
4
pulmonary
4
agonists pulmonary
4
pulmonary disease
4
disease melanocortin
4

Similar Publications

Background: The growth in obesity and rates of abdominal obesity in developing countries is due to the dietary transition, meaning a shift from traditional, fiber-rich diets to Westernized diets high in processed foods, sugars, and unhealthy fats. Environmental changes, such as improving the quality of dietary fat consumed, may be useful in preventing or mitigating the obesity or unhealthy obesity phenotype in individuals with a genetic predisposition, although this has not yet been confirmed. Therefore, in this study, we investigated how dietary fat quality indices with metabolically healthy obesity (MHO) or metabolically unhealthy obesity (MUO) based on the Karelis criterion interact with genetic susceptibility in Iranian female adults.

View Article and Find Full Text PDF

The lipocalin saga: Insights into its role in cancer-associated cachexia.

Biochim Biophys Acta Mol Basis Dis

January 2025

National Forensic Sciences University, Gandhinagar 382007, Gujarat, India. Electronic address:

Cancer-associated cachexia (CAC) is a debilitating condition, observed in patients with advanced stages of cancer. It is marked by ongoing weight loss, weakness, and nutritional impairment. Lower tolerance of chemotherapeutic agents and radiation therapy makes it difficult to treat CAC.

View Article and Find Full Text PDF

N-Branched Tricyclic Guanidines as Novel Melanocortin-3 Receptor Agonists and Melanocortin-4 Receptor Antagonists.

J Med Chem

January 2025

Department of Medicinal Chemistry and the Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States.

The melanocortin receptors are a class of centrally and peripherally expressed G protein-coupled receptors, of which the MC3R and MC4R subtypes are implicated in the regulation of appetite and energy homeostasis and can serve as potential therapeutic targets for disorders such as obesity and cachexia. An unbiased high-throughput mixture-based library screen was implemented to identify novel ligands with an emphasis on the identification of nanomolar-potent agonists of the mouse melanocortin-3 receptor. This screen yielded the discovery of an N-branched tricyclic guanidine scaffold (TPI2408) that contained three nanomolar potent mMC3R agonists and additional compounds that possessed antagonism for the mMC4R.

View Article and Find Full Text PDF

This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.

View Article and Find Full Text PDF

Vitiligo is a complex autoimmune disease characterized by the loss of melanocytes, leading to skin depigmentation. Despite advances in understanding its genetic and molecular basis, the precise mechanisms driving vitiligo remain elusive. Integrating multiple layers of omics data can provide a comprehensive view of disease pathogenesis and identify potential therapeutic targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!